
SANDIA REPORT
SAND2010-3023J
Unlimited Release
Printed May 2010

Derivative-Free Optimization Via
Evolutionary Algorithms Guiding Local
Search

Joshua D. Griffin, Kathleen R. Fowler, Genetha A. Gray, Thomas Hemker, and Matthew D.
Parno

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2010-3023J
Unlimited Release
PrintedMay 2010

Derivative-Free Optimization Via Evolutionary Algorithms
Guiding Local Search

Joshua D. Griffin
Department of Numerical Optimization R&D

SAS Institute Inc.
100 SAS Campus Drive Cary, NC 27513

Joshua.Griffin@sas.com

Kathleen R. Fowler
Department of Mathematics& Computer Science

Clarkson University
Box 5815

Potdam, NY 13699-5815
kfowler@clarkson.edu

Genetha A. Gray
Dept. of Quantitative Modeling & Analysis, 8954

Sandia National Laboratories
P.O. Box 969, MS9159

Livermore, CA 94551-0969
gagray@sandia.gov

Thomas Hemker
Department of Computer Science

TU-Darmstadt
64283 Darmstadt

Germany
hemker@sim.tu-darmstadt.de

Matthew D. Parno
Computation for Design and Optimization

Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139

mparno@mit.edu

3

Abstract

In this paper, we describe the technical details of HOPSPACK (Hybrid Optimization Parallel Search
Package), a new software platform which facilitates combining multiple optimization routines into a
single, tightly-coupled, hybrid algorithm that supports parallel function evaluations. The framework
is designed such that existing optimization source code can be easily incorporated with minimal
code modification. By maintaining the integrity of each individual solver, the strengths and code
sophistication of the original optimization package are retained and exploited.

Note that this paper was submitted to the Pacific Journal of Optimization in April 2010.

4

Acknowledgments

The authors would like to thank and acknowledge the following people and programs:

• The American Institute of Mathematics for their support of both the “Derivative-Free Hy-
brid Optimization Methods for Solving Simulation-Based Problems in Hydrology” held in
October 2008 and the “Hybrid Optimization” Square held in 2009-2011.

• Ioannis Akrotirianakis for his input.

• Robert Fowler for his assistnace with the figures.

• The ASC program and Jim Stewart for continued support of this work.

5

DERIVATIVE-FREE OPTIMIZATION VIA EVOLUATIONARY
ALGORITHMS GUIDING LOCAL SEARCH (EAGLS) FOR MINLP

J.D. GRIFFINA, K. R. FOWLERB ,G.A. GRAYC ,T. HEMKERD, M.D. PARNOE

A SAS Institute, Inc Raleigh, NC
B Department Math & Computer Science, Clarkson University, Potsdam, NY
C Sandia National Labs, Livermore, CA
D Department of Computer Science, TU Darmstadt, Darmstadt, Germany
E Computation for Design and Optimization, MIT, Cambridge, MA

This work was partially supported by the American Institute of Mathematics. The work of

Gray was supported by Sandia National Laboratories, a multi-program laboratory operated by San-

dia Corporation, a Lockheed Martin Company, for the United States Department of Energy under

contract DE-AC04-94AL85000. Thanks to I. Akrotirianakis for his input and to R.M. Fowler for

assistance with the figures.

Abstract. Derivative-free optimization approaches are commonly used for simulation-based
design problems when objective function and possibly constraint evaluations have a black-box for-
mulation. A variety of algorithms have been developed over the last several decades to address the
inherent challenges such as computationally expensive function evaluations, low amplitude noise, non-
smoothness, nonconvexity, and disconnected feasible regions. Hybrid methods are emerging within
the direct search community as new tools to overcome weaknesses while exploiting strengths of sev-
eral methods working together. In this work, we extend the capabilities of a parallel implementation
of the generating set search (GSS) method, which is a fast local derivative-free approach, to handle
integer and categorical variables. This is achieved with a hybrid approach that uses a genetic algo-
rithm (GA) to handle the integer variables. Promising points are selected as starting points for the
GSS local search with the integer variables held fixed before being passed back to the GA for the
standard mutation and crossover operations. We provide promising numerical results on three mixed
integer problems; one based on the design of a compression spring, a simulation-based problem from
hydrology, and a standard problem taken from the literature.

Key words. mixed-integer problems, generating set-search, genetic algorithm

1. Introduction. In this paper we explore the asynchronous parallel hybrid
combination of an existing heuristic algorithm (NSGA-II) with an existing direct
search algorithm (APPSPACK). Heuristic-based algorithms, such as genetic algo-
rithms, are attractive in that they often naturally support discrete variable manip-
ulation; however they can require an inordinate number of function evaluation to
converge to a local minimum when only continuous variables are present. Generat-
ing Set Search (GSS) is a derivative-free optimization method where minimization is
guided only by function values evaluated using a positive-spanning basis [30, 29]. It
is well-suited for simulation-based optimization problems where function evaluations
are expensive, nonsmooth, and possibly discontinuous. Even if they ultimately ap-
proximate a smooth function, the objective and constraint derivatives are typically
unknown and numerical approximations may be unreliable due to noise. GSS is easily
parallelized, and can be made to run asynchronously to minimize load imbalance. Be-
cause GSS algorithms are only loosely coupled with derivatives, they are less likely to
become stuck at nearby local minima when compared to derivative-based algorithm;
however, they are nonetheless a local search algorithm and cannot move on to explore
alternate regions once all the existing trial-points lie within a single basin (or locally
convex region). Further, GSS algorithms do not natively support categorical variables
or mixed-integer problems.

6

7

Abramson et al. [1] recently extend a direct search (MADS) algorithm to handle
mixed-variables by incorporating user-defined neighborhoods for the categorical vari-
ables. In this paper, we explore the use of a genetic algorithm in place of user-defined
neighborhoods. This is done using a loosely coupled parallel hybrid optimization
framework where a single instance of a genetic algorithm and multiple instances of
direct search algorithms are ran collaboratively in parallel. Because we assume that
the discrete variables are non-relaxable, the direct search instance each optimize only
with respect to the continuous variables, holding the integer (or categorical) variables
fixed temporarily. All evaluations are computed asynchronously in parallel.

For this work, we consider objective functions of the form f : Rnr+nz → R and
mixed-integer nonlinear optimization problems of the form

minimize
p

f(p)

subject to c(p) ≤ 0
p` ≤ p ≤ pu,

(1.1)

where

p` =

(
z`
x`

)
, p =

(
z
x

)
, pu =

(
zu
xu

)
.

Here nr and nz denote the number of real and integer variables and x ∈ Rnr , z ∈ Znz

and c(p) : Rnr+nz → Rm. When integer variables are present, a popular first choice
class of algorithms to explore are Evolutionary Algorithms (EAs) or a subset of EAs
called Genetic Algorithms (GAs). Further, such algorithms perform a global search
of the feasible region and hence seek out robust minimums. A well-known drawback
is that the number of function evaluations can be exorbitant.

The objective of this work is to improve the capabilities of the GSS algorithm
to handle integer and categorical variables within a hybrid optimization framework.
Recently frameworks, such as those used in [19, 46, 20, 43], were developed to fas-
cillitate the rapid natural construction of loosely coupled asynchronous parallel hy-
brid optimization algorithms, which exploit load-balance to create robust algorithms
with improved wall-time. The structure ensures that existing theoretical convergence
properties of individual algorithms are maintained, while permitting individuals to
monitor and leverage real-time performance of other concurrently running individ-
uals. Given a sufficient number of processors, the hybrid algorithm typically is no
slower, than the fastest algorithm contained within the hybrid. Thus, if the hybrid
contains optimization algorithms A, B, and C, if A is the fastest for a given problem,
then Hybrid(A,B,C) is usually as fast as algorithm A. A tremendous benefit to the
analyst, is that there is no need for the user (often having limited optimization back-
ground) to predict beforehand which of the existing solvers will be the most suitable
for a given optimization problem.

We construct a hybrid algorithm which naturally extends GSS to the mixed-
integer environment by using existing state of the art genetic algorithm software. We
refer to the software used to implement the hybrid algorithm framework as Evolution-
ary Algorithms Guiding Local Search (EAGLS). Hybrid combinations of a GA with a
local search method are not new. See for example, [3, 23] and the references therein.
However, here we us the GA as an outer optimization tool and make use of the bi-
nary capabilities to handle the integer variables while GSS performs a local search
on the real variables only. In this context, the GSS can do what it does best, local

8

derivative-free refinement, while the GA can perform a global search, and moreover
the integer variables are handled naturally.

We proceed by describing the GA and GSS algorithms and the software used to
implement the hybrid algorithm (the NSGA-II [10, 50, 5, 8] and APPSPACK [26, 28]).
In sections 4 and 5 we describe the hyrbidization of the GA and GSS. We present
results for a compression spring model [2], a simulation-based hydrology application
[33, 25, 17, 24], and a standard mixed-integer test problem in Section 6 and point the
way towards future work.

2. Genetic Algorithms. Genetic algorithms are part of a larger class of evo-
lutionary algorithms and are classified as population based, global search heuristic
methods [15]. Genetic algorithms are based on biological processes such as survival of
the fittest, natural selection, inheritance, mutation, and reproduction. Design points
are coded as “individuals” or “chromosomes”, typically as binary strings, in a popu-
lation. Through the above biological processes, the population evolves through a user
specified number of generations towards a smaller fitness value. We can define the
following simple GA in Algorithm 1.

Algorithm 1 Genetic Algorithm Framework

Require: Population size np, Number of Generations ng
1: Generate and rank initial population: P1 = p1, . . . , pnp

2: for k = 1, . . . , ng do
3: Pk+1 = select(Pk)
4: Pk+1 = mutate(Pk+1)
5: Pk+1 = merge(Pk, Pk+1)
6: end for

We should note that GAs can directly handle bound constraints but linear and
nonlinear constraints are often included in Eq. (1.1) by using a barrier or penalty
approach. We describe our implementation in section 6. Thus the fitness of an
individual may include the objective function along with a measure of constraint
violation. During the selection phase, better fit individuals are arranged randomly to
form a mating pool on which further operations are performed. Crossover (merge)
attempts to exchange information between two design points to produce a new point
that preserves the best features of both ‘parent points’. Mutation is used to prevent
the algorithm from terminating prematurely to a suboptimal point and is used as
a means to explore the design space. Termination of the algorithm is based on a
prescribed number of generations or when the highest ranked individual’s fitness has
reached a plateau.

Genetic algorithms are often criticized for their computational complexity and
dependence on optimization parameter settings, which are not known a priori. How-
ever, if the user is willing to exhaust a large number of function evaluations, the GA
can help gain insight into the design space and locate initial points for fast, local
single search methods.

In this work, we use the Non-dominated Sorting Genetic Algorithm NSGA-II,
which is described in [10, 50, 5, 8]. Although a variety of genetic algorithms exist,
the NSGA-II has been applied to both single and multi-objective problems for a wide
range of applications including the two hydrology applications used in this work. Here,
we consider a single-objective use of the NSGA-II, which incorporates both real- and
binary-coded variables, and uses binary tournament selection [6]. We use the standard

9

dual system representation for the integer valued variables. For the real-coded vari-
ables, the simulated binary crossover (SBX) operator [6, 7] with polynomial mutation
is used while single-point crossover with bitwise mutation are used for binary-coded
variables. Parameters like the population size, number of generations, as well as the
probabilities and distribution indexes chosen for the crossover and mutation operators
effect the performance of a GA [44, 34].

3. Generating Set Search and Pattern Search. Generating set search (GSS)
denotes a class of algorithms for bound and linearly constrained optimization problems
that obtain conforming search directions from generators of local tangent cones [30,
29]. In the case that only bound constraints are present, GSS is identical to a pattern
search optimization algorithm. Pattern searches use a predetermined pattern of points
to sample a given function domain. It has been shown that if certain requirements
on the form of the points in this pattern are followed and if the objective function is
suitably smooth, convergence to a stationary point is guaranteed [12, 31, 48].

The majority of the computational cost of pattern search methods is the function
evaluations, so parallel pattern search (PPS) techniques have been developed to reduce
the overall computation time. Specifically, PPS exploits the fact that once the points
in the search pattern have been defined, the function values at these points can be
computed simultaneously [11, 47]. In this work, we specifically consider Asynchronous
Parallel Pattern Search (APPS) [26, 28]. The APPS algorithm is a modification of
PPS that eliminates the synchronization requirements. It retains the positive features
of PPS, but reduces processor latency and requires less total time than PPS to return
results [26]. Implementations of APPS have minimal requirements on the number
of processors and do not assume that the amount of time required for an objective
function evaluation is constant or that the processors are homogeneous.

Omitting the implementation details, the basic APPS algorithm can be simply
outlined as follows:

1. Generate a set of trial points to be evaluated.
2. Send the set of trial points to the conveyor for evaluation, and collect a

nonempty set of evaluated points from the conveyor. (The conveyor is a
mechanism for shuttling trial points through the process of being evaluated.)

3. Process the set of evaluated points and see if it contains a new best point. If
there is such a point, then the iteration is successful; otherwise, it is unsuc-
cessful.

4. If the iteration is successful, replace the current best point with the new
best point. Optionally, regenerate the set of search directions and delete any
pending trial points in the conveyor.

5. If the iteration is unsuccessful, reduce certain step lengths as appropriate. In
addition, check for convergence based on the step lengths.

A detailed procedural version of APPS is given in [18], and a complete mathematical
description and analysis is available in [28].

The APPS algorithm described here has been implemented in an open source
software package called APPSPACK. It is written in C++ and uses MPI [?, 22] for
parallelism. The details of the implementation are described in [18]. APPSPACK has
been successfully applied to problems in microfluidics, biology, groundwater, thermal
design, and forging. (See [18] and references therein.).

APPSPACK performs function evaluations through system calls to an external
executable which can written in any computer language. This simplifies its execu-
tion and makes it amenable to customization. Of particular interest to us is the

10

p1

p2

p3

Fig. 4.1. For a nonconvex function, the point having the best fitness score is not necessarily
the best starting point for local optimization. In this example, (supposing there are only resources
available to maintain two parallel local searches) starting a local search at p1 and p3 is preferable to
beginning from p1 and p2.

management of the function evaluation process. The procedure is quite general and
merely one way of handling the process of parallelizing multiple independent function
evaluations while efficiently balancing computational load. This management sys-
tem makes APPSPACK particularly amenable to hybridization in that it can readily
accommodate externally generated points.

4. Trial-point selection criteria for parallel local search. We of course do
not want to apply multiple local search algorithms to starting points that correspond
to the same local minimizer. Rather, as shown in Figure 4.1, it is preferable to start
from points that are both promising with respect to their current objective value,
but also diversely located so as to increase the likelihood of finding different local
minimums.

In this paper we apply a vary simple strategy that seeks to leverage the presence of
niching techniques within genetic algorithms [4, 16, 42, 32].The need for niching arises
in genetic algorithms applied to multimodal optimization is tendency for the popula-
tion to converge to a single optimum. Further, little is gained by merging points which
belong to different basins of the objective function. Thus niching is a commonly used
strategy to naturally divide the current population into sub-populations (or demes)
corresponding to different minimas. The essential idea is to rank the population Pk
not only with respect to the corresponding fitness score, but also with respect to some
metric measuring similarity (or dissimilarity) between points, such as the crowding
distance. The genetic algorithm is then modified to encourage sub-populations to
remain in their respective deme.

Given the resource for k parallel searches, ideally we would spread these equally
over the most promising demes. If we assume that the underlying GA has been
constructed to support some variant of niching then we can implicitly encourage
points to come from distinct demes by using a simple scheme that penalizes points
that are geometrically close to nearby points with better fitness scored. We first define
the distance between two points using the scaled-Euclidean distance

d(v, w) =

√√√√nr+nz∑
i=1

si

(
vi − wi

(p`)i − (pu)i

)2

; (4.1)

and then rank points by recursively selecting the best point from the population

11

penalized by lying with close proximity to previously selected promising points.

p′1 = arg min{f(p) + P(p, ρ, α) | p ∈ Pk}

p′2 = arg min{f(p) + P(p, ρ, α) + γ
1

d(p, p′1)
| p ∈ Pk}

...

p′np
= arg min{f(p) + P(p, ρ, α) + γ

np−1∑
j=1

1

d(p, p′j)
| p ∈ Pk}

The penalization parameter γ can then be used to encourage starting point selection
to come from diverse members of the population pool. There are of course more
sophisticated schemes that may be used (i.e. explicitly select the best point from
deme for local optimization); however, we have found that this simple sorting scheme
to be sufficient for our needs. Note further that if si equals one for integer variables
and zero for continuous variables, then this scheme will ensure that each instance in
the parallel local search pool is refining a separate integer plane as shown in Figure 5.
In the next section we will describe the EAGLS algorithm.

5. EAGLS algorithm description. In Algorithm 2 we present a synchronous
version of the EAGLS algorithm to simplify the description of the algorithm which in
practice was implemented asynchronously using concepts similar to those exploited
in [19, 46, 20]. In synchronous mode the algorithm essentially nests a GA iteration
with a parallel local search refinement phase (similar strategies have been proposed
in [45, 49, 9]).

In Step 3-Step 7 the classic steps of a genetic algorithm are executed. Step 8-
Step 9 are dedicated to the local search phase of the algorithm. Note that in practice
these steps are happening simultaneously to prevent load imbalance; to ensure that
GA iterations are spliced by local search iterations, a priority queuing system is used
to place new population of trial points lower in the evaluation queue until the current
local search evaluation budget has been expended. Note that we only refined evaluated
parent points in the populations. Unevaluated child trial-points cannot be selected for
local refinement. This prevents a child point from drifting before it can be evaluated.

The variant of EAGLS we describe in Algorithm 2 has three point of synchro-
nization which can be sources of load imbalance: Step 1 and Step 5 where new point
generated by the GA must be evaluated, and Step 9 where the ns solvers must either
find local solutions or expend their collective budgets prior to exiting. These points
of synchronization can readily be removed if a shared evaluation queue is used as
described in [20]; at which point the local search can continue to run while the GA is
waiting for Step 5 to complete. This is helpful when executing function evaluation in
parallel that are computational expensive and have widely varied evaluation times.

The primary purpose of this paper is to provide a natural extension of popular
direct search algorithms, currently restricted to real variable problems, to optimization
problems that have (non-relaxable) binary variables in a manner where very little is
required by the end user. Fortunately NSGA-II and APPSPACK are two well-known
software package that often require little parameter tuning and can often be used
“out of the box”. Thus these two software packages were a natural choice for parallel
hybrid optimization, where each algorithm is free to do what it does best: (1) the GA’s
handling of integer and real variables for global search, and (2) the GSS’s handling of
real variables in parallel for local search.

12

Algorithm 2 Genetic Algorithm Guiding Local Search

Require: Population size: np
Require: Maximum number of generations: ng
Require: Budget for local search: nb
Require: Number of parallel local searches desired: ns

1: Generate (evaluate in parallel) and rank initial population: P1 = p1, . . . , pnp

2: for k = 1, . . . , ng do
3: Pk+1 = select(Pk)
4: Pk+1 = mutate(Pk+1)
5: Evaluate in parallel new points in Pk+1

6: Pk+1 = merge(Pk, Pk+1)
7: P ′k+1 = rank(Pk+1)
8: Choose first ns of P ′k+1 for local search
9: Create ns instances of APPS for 1 ≤ i ≤ ns subproblems:

minimize
x∈Rnr

f(x, int(p′i))

subject to x` ≤ x ≤ xu
(5.1)

10: while number of evaluations < nb do
11: Run APPS instance in parallel with parallel evaluations
12: end while
13: end for
14:

The combinatorial nature of integer variables make these problems very difficult.
If the integer variables are relaxable (i.e. the objective function is defined for rational
variables) more sophisticated schemes such as branch and bound may be preferred
options. However, for simulation based optimization problems, often the integer vari-
ables are categorical having no natural ordering and hence cannot be relaxed. That
is, there is no well-defined mathematical definition for what is meant by “nearby”.

One possibility is to manually create definitions for neighborhoods such as [1];
these neighborhoods can then be used to allow the direct search algorithm to sample
“nearby” integer planes. In this approach, for a point to be declared “optimal”, it
must satisfy the algorithms criteria for local optimality with respect to the continuous
variables, and no worse than the best point in the corresponding neighborhood. The
user must therefore balance efficiency (if the selected neighborhood definitions are
too large the algorithm may need to evaluate many points), with effectiveness (if the
neighborhood definitions are too restrictive, the global solution may not be obtainable,
regardless of the number of iterations).

Another possibility for a such problem is to attempt to learn a smart mapping that
in a senses, dynamically learns the ordering of categorical variables using surrogate
models such as [24, 41]; this mapping can then be used to recover the notion of
neighborhood for discrete variables, as the surrogate smoothly extend the integer
variables to the real variables. One drawback to using surrogates is the time to create
a model can be prohibitive as the number of evaluations increase.

Our paper explores a third possibility, where the genetic algorithm is used to move
from one integer plane to another, see Figure 5. In a sense, the genetic algorithm
defines a probabilistic-based mapping from one integer plane to the next, while the

13

Fig. 5.1. While the local searches are constrained to a given integer plane with the integer
component fixed, the genetic algorithm is free to move points both with respect to the real variables
x, y, and the integer variables z.

local search corrects for errors in the mapping. Of course, if the user can provide
information or a metric for changes in the integer variables, this could be used to set
the parameters and operator options of the GA appropriate to this.

6. Numerical Results. We demonstrate the performance of EAGLS on three
mixed-integer problems. One is from a spring mass model, one is a simulation based
problem from hydrology, and one is a standard MINLP test problem taken from [27].
All problems include nonlinear inequality constraints. A popular strategy for handling
constraints is to use penalty function where the constraint violation is incorporated
with the objective function to form a corresponding merit function. In this paper we
consider the `1 and the `1-smoothed penalty function

sP(p, ρ) = ρ

m∑
i=1

max(0, ci(p)) (6.1)

P(p, ρ, α) = α

m∑
i=1

ln(1 + eρci(p)/α). (6.2)

It can be shown that

P(p, ρ) ≤ P(p, ρ, α) ≤ P(p, ρ) + 3mα.

whose effectiveness were explored in detail in [21]. Thus, independent of the choice of
ρ (which is practice is often quite large),

|P(p, ρ)− P(p, ρ, α)| ≤ 3mα,

and hence the approximation level is uniformly controlled by the size of α. The `1
penalty function is attractive as one can show under certain standard assumption that
a minimizer of the constrained problem coincides with an unconstrained minimizer
of the `1 penalty function when ρ is sufficiently large. Thus the constrained problem
reduces to an unconstrained problem, if ρ is selected appropriately.

Unfortunately, for primal approaches, exact penalty function are necessarily non-
smooth. A stated early, direct search algorithms such as GSS, tie convergence (al-
beit loosely) to an implicit assumption that the objective function, modulo noise, is

14

x

x

free length

displacement

1

2

Fig. 6.1. Compression spring problem

smooth. Thus, GSS easily gets stuck in practice at a nonsmooth point. To avoid this
difficulty, a smoothed variant of the exact penalty function may be used, where ρ is
sufficiently large with respect to the current step size, to prevent stagnation of the
algorithm. Thus in our approach the GA will optimize Eq. (6.1) independently from
GSS, where the GA (being less susceptible to real nonsmoothness) will use the exact
penalty function P(x, ρ) directly , while the GSS will leverage the smoothed variant
P(x, ρ, α).

6.1. Compression Spring Application. This problem is based on a problem
presented in [40]. This objective of this problem is to design a coil compression spring
with minimum volume. See Figure 6.1.

The decision variables for this problem are p = (z1, x1, x2)T where z1 is the
number of coils, x1 is the coil diameter, and x2 is the wire diameter (measured in
inches). The bound constraints are given by

p ∈ Ω = {p|z ∈ {1, 2, . . . , 70} , x1 ∈ [0.6, 3], x2 ∈ [0.207, 0.5]} .

We seek to minimize the objective function f(p) where

f(p) = π2x1x
2
2(z1 + 2)

4
(6.3)

subject to the following constraints,

c1(p) =
SCfFmaxx1

πx3
2

− S ≤ 0

c2(p) = lf − lmax ≤ 0
c3(p) = σp − σpm ≤ 0

c4(p) = σp − Fp

K ≤ 0
c5(p) = σw − Fmax−F

K ≤ 0.

(6.4)

The parameters are defined by

15

Cf = 1 + 0.75 x2

x1−x2
+ 0.615 ∗ x2

x1

Fmax = 1000
S = 189000
lf = Fmax

K + 1.05 ∗ (z1 + 2) ∗ x2
lmax = 14;

σp =
Fp

K
σpm = 6
Fp = 300

K = 11.5× 106
x4
2

8z1x3
1

σw = 1.25

(6.5)

Due to the stochastic nature of the genetic algorithm, we ran 500 optimization tri-
als. The published solution to this problem in [2] has function value of 2.6254 although
for that work, x2 is also treated as a discrete variable and we relax that variable here.
The best point found for this work was p = (6, 1.49881021096990, 0.297845552041890)
which gives a function value of 2.6246. In the discussion that follows, let j = 1, . . . , 500
denote the counter for the optimization trials and let i denote each individual op-
timization trial’s function evaluation counter. We consider a run successful if the
function value is within 1% of the best function value found, denoted fb, in all 500
optimization experiments. This approach is comparable to that proposed in [39] where
instead each heuristic optimization trial would be considered a different benchmarking
problem.

Moreover, since we allowed EAGLS a large function evaluation budget to allow
for an exhaustive search of the design space, we normalize our function evaluation
counter by identifying the most iterations it took for any optimization trial to be
successful. Specifically, we consider i/max{lj}, where lj = min{i|fi,j ≤ fb} indicates
the function evaluation when success was detected. For this problem, the slowest
convergence of any trial took 1364 function evaluations.

We demonstrate two performance measures, shown in Figure 6.2. The left vertical
axis shows the lowest and highest function values found as the optimization progresses.
The right vertical axis shows the success rate, that is the fraction of of successful runs
defined by

{j : fi,j ≤ fb}
max{lj}

. (6.6)

The steep jump around 0.4 means that within 40 % of the most function evaluations
needed for success, just below 80% of the optimization runs had already successfully
found the solution. This further implies that although the GA is stochastic in nature,
there is a high probability of success in terms of locating the optimal point within
1000 function evaluations for this problem.

6.2. Hydrology Application. We consider a water supply problem, which is
described in [35, 36] and have been studied in detail as a benchmarking problem for
optimization methods [25, 13, 14, 24]. The objective is to minimize the cost needed
to install and operate a well-field that supplies a specified quantity of water. The
decision variables are the pumping rates {Qk}nk=1, the well locations {(xk, yk)}nk=1,
and the number of wells n ≤ Nw. Here n is the number of wells in the final design
and Nw = 6 is the maximum number of wells allowed. We determine the number of

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

Effort Until Longest Run Finds Succesfull Candidates
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 R
at

e

Lowest of All Runs
Highest of All Runs
Rate of Successful Runs

Fig. 6.2. Compression spring problem results

wells by using a binary indicator to indicate if a well is on or off in the final design.
We proceed by briefly describing the objective function and constraints.

We consider a capital cost f c to install a well and an operational cost fo to pump
a well, and we seek to minimize the total cost fT = f c + fo. A negative pumping
rate means that a well is extracting and a positive pumping rate means that a well is
injecting. The objective function, as proposed in [35, 36] is given by

fT =

n∑
k=1

skc0d
b0
k +

∑
k,Qk<0.0

skc1|Qmk |b1(zgs − hmin)b2︸ ︷︷ ︸
fc

(6.7)

+

∫ tf

0

 ∑
k,Qk<0.0

skc2Qk(hk − zgs) +
∑

k,Qk>0.0

skc3Qk

 dt

︸ ︷︷ ︸
fo

,

where cj and bj are cost coefficients and exponents, dk = zgs is the depth of well
k, Qmk is the design pumping rate for which we use Qmk = 1.5Qk m3/s, hmin is the
minimum allowable hydraulic head, and hk is the hydraulic head in well k. In Eq.
(6.7), sk = 0, 1 indicates whether or not a well is on or off. Obtaining the hydraulic
head values requires a call to a groundwater flow simulator for a solution to a partial
differential equation that models saturated groundwater flow. For this work, we used
the U.S. Geological Survey code MODFLOW-96 [37, 38]. MODFLOW is a widely
used and well supported block-centered finite difference code that simulates saturated
groundwater flow. The cost data is given in [36].

We constrain the pumping rates and hydraulic head for the objective function
given in Eq. (6.7). The constraints are given by

− 0.0064 m3/s ≤ Qk ≤ 0.0064 m3/s, k = 1, ..., n, and (6.8)

17

10 m ≤ hk ≤ 30 m, k = 1, ..., n. (6.9)

Constraints (6.8) and (6.9) are enforced at each well. Constraint (6.8) reflects physical
limits on the pumps and well design. We also constrain the net pumping rate. We
specify the amount of water to supply with

n∑
k=1

Qk ≤ −0.032 m3/s. (6.10)

Since this constraint depends only on the pumping rates, it is chekced first and if the
inequality is not satisfied, the simuator in not executed and a significantly large value
is assigned to the objective function.

We allowed 50 optimization trials and as in the previous discussion on the com-
pression spring model, we let j denote the optimization trial and i denote the function
evaluations counter. For all of the hydrology applications, the installation of a well
is roughly $20,000 while the operating cost is only about $1,000 per year, thus the
integer variable that defines the installation of a well leads to a large decrease in cost.

The water supply problem has been shown to be particularly challenging [14, 13]
because to satisfy the supply constraint given by Eq. (6.10), the solution requires 5
wells pumping at the maximum allowable extraction rate given in Eq. (6.8). Thus
to test the integer and local search capabilities of EAGLS, we allow for at most 6
wells which means that the only possible feasible points would have 5 or 6 active
wells. It was shown in [14] there are many local minima with 6 wells and for the
optimization methods tested there (which included APPSPACK and the NSGA-II as
stand alone optimization approaches), an initial 6 well design with at least 5 wells
with rates set to -0.0064 m3/s was required for convergence. Published solutions for
this problem have a final objective function value of roughly $124,00 and EAGLS was
able to locate a comparable point without any initial iterate, which is a significant
improvement over the performance of previous attempts by both APPSPACKand the
NSGA-II. Figure 6.3 shows the performance of EAGLS for this application. Here we
again define a successful optimization run as resulting in a function value within 1%
of the best value found over all. It took the slowest optimization trial only 65 function
evaluations to detect success. We allowed EAGLS a budget of 3000 function calls and
of this only around 1000 satisfied the linear constraint given by Eq. (6.10), which
means that the simulator was not executed. Although there is not a steep jump in
terms of the rate of success, the highest function value of all optimization runs drops
down to roughly $127,000 after about 20% of the function evaluations are performed
(roughly 13), meaning that a five well design with the appropriate pumping rates was
found and from that point forward the optimal locations are being sought to improve
the operational cost in Eq (6.7).

6.3. Standard Test Problem. This test problem is taken from [27] and t he
decision variables are p = (z1, z2, z3, x1, x2)T with bound constraints given by

p ∈ Ω = {p|z1, z2, z3 ∈ {0, 1} , x1, x2 ∈ [0, 10]} .

We seek to minimize the objective function f(p) where

f(p) = 2x1 + 3x2 + 1.5z1 + 2z2 − 0.5z3 (6.11)

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6
x 10

5

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

Effort Until Longest Run Finds Succesfull Candidates
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 R
at

e

Lowest of All Runs
Highest of All Runs
Rate of Successful Runs

Fig. 6.3. Water supply problem results

subject to the following constraints,

c1(p) = x21 + z1 − 1.25 = 0
c2(p) = x1.52 + 1.5z2 − 3.00 = 0
c3(p) = x1 + z1 − 1.60 ≤ 0
c4(p) = 1.333x2 + z2 − 3.00 ≤ 0
c5(p) = −z1 − z2 + z3 ≤ 0.

(6.12)

We used the same performance measures as above and 500 optimization trials.
The convergence results are shown in Figure 6.4. It took the slowest optimization
run 772 function evaluations to find the solution. Note that after about 0.7 on the
horizontal axis, indicating about 540 function calls, nearly all optimization runs had
located the solution.

7. Conclusions. We have provided a parallel framework for using an evolution-
ary algorithm to extend the capabilities of a local generating set-search method to
handle integer and categorical variables, while help to globalize the search for good
minima. The implementation presented here combined two software packages, the
NSGA-II and APPSPACK. For each of the three test problems, multiple optimiza-
tion trials were run to understand the success of the algorithm since the GA is not
deterministic. The numerical results on three mixed-integer problems are promising
and solutions obtained are comparable to those found in the literature for all problems.
EAGLS is currently under further development and future directions include devel-
oping appropriate stopping criteria, more advanced constraint handling, guidance in
selecting algorithmic parameters, and further testing on problems with categorical
variables.

REFERENCES

19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

Effort Until Longest Run Finds Succesfull Candidates
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 R
at

e

Lowest of All Runs
Highest of All Runs
Rate of Successful Runs

Fig. 6.4. Standard MINLP test problem results

[1] M. A. Abramson, C. Audet, J. W. Chrissis, and J. G. Walston, Mesh adaptive direct search
algorithms for mixed variable optimization, Optimization Letters, 3 (2007), pp. 35–47.

[2] M. Clerc, A method to improve standard pso, Tech. Report MC2009-03-13, 2009.
[3] J. Contact and G. R. Raidl, Combining Metaheuristics and Exact Algorithms in Combi-

natorial Optimization: A Survey and Classification, Lecture Notes in Computer Science,
Springer, Berlin, 2005.

[4] K. A. De Jong, An analysis of the behavior of a class of genetic adaptive systems., master’s
thesis, Ann Arbor, MI, USA, 1975.

[5] K. Deb, An efficient constraint handling method for genetic algorithms, Computer Methods
in Applied Mechanics and Engineering, 186 (2000), pp. 311–338.

[6] K. Deb and R. B. Agrawal, Simulated binary crossover for continuous search space, Complex
Systems, 9 (1995), pp. 115–148.

[7] K. Deb and H. G. Beyer, Self-adaptive genetic algorithms with simulated binary crossover,
Evolutionary Computation Journal, 9 (2001), pp. 197–221.

[8] K. Deb and T. Goel, Controlled elitist non-dominated sorting genetic algorithms for better
convergence, in Proceedings of the First International Conference on Evolutionary Multi-
Criterion Optimization EMO 2001, E. Zitler, K. Deb, L. Thiele, C. Coello-Coello, and
D. Corne, eds., Lecture Notes on Computer Science, , 2001, pp. 67–81.

[9] K. Deb, S. Lele, and R. Datta, A hybrid evolutionary multi-objective and sqp based procedure
for constrained optimization, Lecture Notes in Computer Science, 4683 (2007), pp. 36–45.

[10] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multi-objective genetic
algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6 (2002), pp. 182–
197.

[11] J. E. Dennis, Jr. and V. Torczon, Direct search methods on parallel machines, SIAM J.
Optim., 1 (1991), pp. 448–474.

[12] E. D. Dolan, R. M. Lewis, and V. Torczon, On the local convergence properties of parallel
pattern search, Tech. Report 2000-36, NASA Langley Research Center, 2000.

[13] K. R. Fowler, C. T. Kelley, C. T. Miller, C. E. Kees, R. W. Darwin, J. P. Reese,
M. W. Farthing, and M. S. C. Reed, Solution of a well-field design problem with implicit
filtering, Optimization and Engineering, 5 (2004), pp. 207–234.

[14] K. R. Fowler, J. P. Reese, C. E. Kees, J. E. Dennis, Jr., C. T. Kelley, C. T. Miller,
C. Audet, A. J. Booker, G. Couture, R. W. Darwin, M. W. Farthing, D. E. Finkel,
J. M. Gablonsky, G. Gray, and T. G. Kolda, A comparison of derivative-free opti-
mization methods for water supply and hydraulic capture community problems, Accepted
to Advances in Water Resources, (2008).

[15] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addi-

20

son Wesley Pub. Company, 1989.
[16] D. E. Goldberg and J. Richardson, Genetic algorithms with sharing for multimodal function

optimization, in Proceedings of the Second International Conference on Genetic Algorithms
on Genetic algorithms and their application, Hillsdale, NJ, USA, 1987, L. Erlbaum Asso-
ciates Inc., pp. 41–49.

[17] G. A. Gray and K. R. Fowler, Approaching the groundwater remediation problem using
multifidelity optimization, in Proc. of the CMWR XVI - Computational Methods in Water
Resources, 19-22 June 2006.

[18] G. A. Gray and T. G. Kolda, Algorithm 856: APPSPACK 4.0: Asynchronous parallel
pattern search for derivative-free optimization, ACM TOMS, 32 (2006), pp. 485–507.

[19] G. A. Gray, M. Taddy, M. Martinez-Canales, and H. K. H. Lee., Enhancing parallel
pattern search optimization with a gaussian process oracle, in In Proceedings of the 14th
Nuclear Explosive Codes Development Conference (NECDC), 2007.

[20] J. D. Griffin and T. G. Kolda, Asynchronous parallel hybrid optimization combining direct
and gss, Optimization Methods and Software, (2009).

[21] , Nonlinearly-constrained optimization using heuristic penalty methods and asynchronous
parallel generating set search, Applied Mathematics Research eXpress, (2010). in press.

[22] W. D. Gropp and E. Lusk, User’s guide for mpich, a portable implementation of MPI, Tech.
Report ANL-96/6, Mathematics and Computer Science Division, Argonne National Lab,
1996.

[23] W. Hart, Adaptive Global Optimization with Local Search, PhD thesis, University of California,
San Diego, CA, 1994.

[24] T. Hemker, K. R. Fowler, M. W. Farthing, and O. von Stryk, A mixed-integer simulation-
based optimization approach with surrogate functions in water resources management, Ac-
cepted to Optimization and Engineering, (2007).

[25] T. Hemker, K. R. Fowler, and O. von Stryk, Derivative-free optimization methods for
handling fixed costs in optimal groundwater remediation design, in Proc. of the CMWR
XVI - Computational Methods in Water Resources, 19-22 June 2006.

[26] P. D. Hough, T. G. Kolda, and V. Torczon, Asynchronous parallel pattern search for
nonlinear optimization, SIAM J. Sci. Comput., 23 (2001), pp. 134–156.

[27] G. Kocis and I. Grossmann, Global optimization of nonconvex mixed-integer nonlinear
programming (minlp) problems in process synthesis, Ind. Eng. Chem. Res., 27 (1988),
pp. 1407–1421.

[28] T. G. Kolda, Revisiting asynchronous parallel pattern search for nonlinear optimization, SIAM
J. Opt., 16 (2005).

[29] T. G. Kolda, R. M. Lewis, and V. Torczon, Stationarity results for generating set search
for linearly constrained optimization, SIAM J. Optimiz., 17 (2006), pp. 943–968.

[30] R. M. Lewis, A. Shepherd, and V. Torczon, Implementing generating set search meth-
ods for linearly constrained minimization, Tech. Report WM-CS-2005-01, Department of
Computer Science, College of William & Mary, Williamsburg, VA, July 2005. Revised July
2006.

[31] R. M. Lewis and V. Torczon, Rank ordering and positive basis in pattern search algorithms,
Tech. Report 96-71, NASA Langley Research Center, Inst. Comput. Appl. Sci. Engrg.,
Hampton, VA, 1996.

[32] J.-P. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson, A species conserving genetic
algorithm for multimodal function optimization, Evol. Comput., 10 (2002), pp. 207–234.

[33] S. L. Mattot, A. J. Rabideau, and J. R. Craig, Optimization of pump and treat systems
using analytic element flow models, Advances in Water Resources, 29 (2006), pp. 760–775.

[34] A. Mayer, C. Kelley, and C. Miller, Optimal design for problems involving flow and trans-
port phenonmena in saturated subsurface systems, Advances in Water Resources, 12 (2002),
pp. 1233–1256.

[35] A. S. Mayer, C. T. Kelley, and C. T. Miller, Optimal design for problems involving flow
and transport phenomena in saturated subsurface systems, Advances in Water Resources,
12 (2002), pp. 1233–1256.

[36] , Electronic supplement to “Optimal design for problems involving flow and trans-
port phenomena in saturated subsurface systems”, 2003. ”http://www.elsevier.com/gej-
ng/10/8/34/58/59/41/63/show/index.htt”, 17 pages.

[37] M. G. McDonald and A. W. Harbaugh, A modular three dimensional finite difference
groundwater flow model, U.S. Geological Survey Techniques of Water Resources Inves-
tigations, (1988).

[38] , Programmer’s documentation for MODFLOW-96, an update to the U.S. geological
survey modular finite difference groundwater flow model, U.S. Geological Survey Open-

21

File Report 96-486, (1996).
[39] J. J. More and S. M. Wild, Benchmarking derivative-free optimization algorithms, SIAM

Journal of Optimization, 20 (2009), pp. 172–191.
[40] G. Onwubolu and B. Babu, New Optimization Techniques in Engineering, Springer, Berlin,

Germany, 2004.
[41] M. D. Parno, K. R. Fowler, and T. Hemker, Framework for particle swarm optimization

with surrogate functions, Tech. Report TUD-CS-2009-0139, Technische Universität Darm-
stadt, Department of Computer Science, 2009.

[42] A. Petrowski, A clearing procedure as a niching method for genetic algorithms, in In Pro-
ceedings of Third IEEE International Conference on Evolutionary Computation(ICEC’96),
Piscataway, NJ, 1996, IEEE Press, pp. 798–803.

[43] T. D. Plantenga, Hopspack 2.0 user manual, Tech. Report SAND2009-6265, Informatics and
Decisions Science Department, Sandia National Laboratories, 2009.

[44] P. Reed, B. Minsker, and D. Goldberg, Designing a competent simple genetic algorithm
for search and optimization, Water Resources Research, 36 (2000), pp. 3757–3761.

[45] M. Sayeed, An efficient parallel optimization framework for inverse problems, PhD thesis,
North Carolina State University, 2004. Director-Mahinthakumar, G.

[46] M. A. Taddy, H. K. H. Lee, G. A. Gray, and J. Griffin, Bayesian guidance for robust
pattern search optimization, Technometrics, 51 (2009), pp. 389–401.

[47] V. Torczon, PDS: Direct search methods for unconstrained optimization on either sequential
or parallel machines, Tech. Report TR92-09, Rice Univ., Dept. Comput. Appl. Math.,
Houston, TX, 1992.

[48] , On the convergence of pattern search algorithms, SIAM J. Optim., 7 (1997), pp. 1–25.

[49] A. Ẑilinskas and J. Ẑilinskas, Parallel hybrid algorithm for global optimization of problems
occurring in mds-based visualization, Comput. Math. Appl., 52 (2006), pp. 211–224.

[50] E. Zitzler, K. Deb, and L. Thiele, Comparison of multiobjective evolutionary algorithms:
Empirical results, Evolutionary Computation Journal, 8 (2000), pp. 173–195.

