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Abstract

The choice of an adequate representation is an important part of every evolutionary
design optimisation. A �exible representation which allows a huge number of design
variation while getting along with a few parameters is preferable. In the past the
Free-From Deformation method was successfully applied for design optimisation. In
this diploma thesis an adaptive Free-Form Deformation is combined with an Evolu-
tion Strategy. The aim is to automatically create a representation which is adapted
to the problem and reduce the dependence on the initial representation build by
a designer. Furthermore it should be analysed if such an adaptation can lead to a
faster convergence.
In a second part a direct manipulation technique is presented to increase the in�u-
ence of the object parameter on the design in order to speed up the optimisation.
Both representations are tested at target matching problems.
If the optimisation is applied to a �uid dynamics optimisation problem, a compu-
tational grid is required to evaluate the designs. Since the Free-From Deformation
represents deformations of an initial design, it can also be applied to a grid. Thus a
costly re-meshing procedure can be omitted. To keep the structural composition of
the mesh the deformations have to be restricted. The in�uence of these additional
constraints is also analysed.



Kurzfassung

Die Wahl einer geeigneten Repräsentation spielt eine entscheidende Rolle in jeder
Evolutionäre Design Optimierung. Eine �exible Repräsentation, die eine möglichst
groÿe Anzahl an Variationen ermöglicht und zugleich mit wenigen Parametern aus-
kommt ist wünschenswert. In der Vergangenheit wurden Free-Form Deformation
Methoden erfolgreich in der Design Optimierung angewendet. In dieser Diplomarbeit
wird eine adaptive Free-Form Deformation mit einer Evolutionsstrategie kombiniert.
Ziel ist es die Repräsentation automatisch an das Problem anzupassen und damit
die Abhängigkeit von der vom Designer entworfenen Repräsentation zuverringern.
Desweiteren soll untersucht werden ob die Adaption zu einer schnelleren Konvergenz
der Optimierung führen kann.
In einem zweiten Teil soll durch die Verwendung einer direkten Manipulations Tech-
nik der Ein�uss der Optimierungsparameter auf das Design verstärkt werden, um
dadurch eine schnellere Konvergenz zu erreichen. Beide Repräsentation werden an
Design Matching Problemen getestet.
Wird die Optimierung auf ein Strömungsdynamik Problem angewendet, ist ein
Rechengitter notwendig um das Design zu bewerten. Da die Free-Form Deforma-
tion die Verformung von einem existierenden Design representiert, kann sie auch
dazu verwendet werden das Rechengitter zu verformen und damit eine aufwendige
Gitter Erzeugung vermieden werden. Damit das Analyse Gitter nach der Verfor-
mung gültig bleibt, muss diese beschränkt werden. Der Ein�uss dieser zusätzlichen
Nebenbedingungen wird ebenfalls analysiert.
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Chapter 1

Introduction

1.1 Motivation

The e�cient development of optimal shape geometries is an important part for ev-
ery product design process. The integration of computational simulation methods
supports designers and engineers by providing any kind of required information and
reduces costly product development time. An autonomous design optimisation en-
vironment producing the optimal shape with as few as possible human interaction
is preferable. To be applicable, such an environment has to ful�l di�erent require-
ments.
Firstly, reliable computer software for simulating the design behaviour in the real
world, e.g. computational �uid dynamic (CFD) or �nite element method (FEM)
simulation, is necessary. It has to model the real world accurately, because the cal-
culated designs are primarily optimal in this simulation. These simulations are based
on computational grids discretisizing the problem. Since the quality of the simula-
tions depend on these grids, they have to be adjusted to the design.
Secondly, the optimiser, leading the optimisation process, has to improve the per-
formance of the design to its optimum in as few optimisation steps as possible.
In the past many algorithms have been proposed to ful�l these requirements for
a given optimisation problem. Beside deterministic approaches like gradient based
and Newton methods, evolutionary computation becomes more and more popular.
Especially for the optimisation of complex systems and problems where a derivative
is not easily available. Their increased popularity can also be ascribed to the fast
advancement of computer processing power and their ability for parallelisation. A
more detailed description of evolutionary algorithms is given in section 1.2.
Thirdly, the representation of the shape. It speci�es the search space and hence de-
termines which solutions can be found by the optimiser. Therefore one has to ensure
that the optimal design is codeable by the representation. That can be achieved by
choosing a representation which enables a large variation by using a huge amount
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of variables.
Controversy the number of parameter should be as low as possible to limit the search
space and enable a fast convergence of the optimisation.
A representation which provides a good trade o� between compactness and com-
pleteness especially for complex designs is the Free-Form Deformation (FFD). Since
this representation speci�es deformations of a control volume, very complex designs
can be represented with a few parameters while still a large variability is provided.
This kind of representation has another major advantage. The computational grid
which is necessary for the evaluation of the design has not to be regenerated or
repaired for the di�erent designs produced during the optimisation. The FFD rep-
resentation allows to deform an initial mesh simultaneously to the design and thus
keep the quality of the computational grid. For complex designs the mesh generation
of unstructured grids often requires manual interventions. These human interactions
prevent an automatic optimisation process. Also automatic meshing approaches ex-
ist but they are adapted to a certain problem or can only mesh simple shapes. And
even if such an automatic approach is available the meshing of complex designs
which contain many edges and ridges, it requires generally a lot of time.
To guarantee the structural composition of the mesh after the deformation, an ad-
ditional constraint to the Free-Form Deformation is introduced. Its in�uence on the
optimisation is analysed in this diploma thesis. Algorithms necessary to maintain
the constraint during the optimisation are developed and compared.
To improve the performance of the optimisation, the designers expend much e�ort to
build an adequate representation. They use their problem speci�c knowledge about
possible solutions to reduce the number of parameters without excluding promising
designs from the search space. But if no roughly knowledge of the optimum is avail-
able, it is di�cult or even impossible to build a proper representation. Due to the
assumptions about the solution used by the designers to build a compact represen-
tation, new and unexpected solutions could be excluded from the search space.
To reduce the dependence of the representation build by designers, in this diploma
thesis an adaptive Free-Form Deformation, which starts with a global representation,
is developed. During the optimisation this global representation is further re�ned
in promising areas. Such an adaptive approach should also enable to �nd new and
unexpected solutions.
Furthermore, the optimal representation is not static over the whole optimisation
process. An adaptive representation which increases the degree of freedom should en-
able to adapt the representation to the current optimisation state in order to speed
up the convergence. Typically the optimisation begins with a macroscopic search
which becomes more and more local during the process. Increasing the number of
parameter during the optimisation should support this search strategy.
The deformations of the control volume in the FFD are de�ned by control points.
The in�uence of these points on the design which is embedded into this volume is
quit di�erent. To achieve a high variability with few control points, their in�uence
has to be maximised by placing the control points adequately. But due to the math-
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ematical de�nition, it is not possible to get a high in�uence for all points. To achieve
a larger and straighter impact on the design, a direct manipulation technique for the
Free-Form Deformation is implemented to specify the deformations. The enlarged
impact should speed up the optimisation process.
The interaction of this representation with an Evolution Strategy is analysed and
algorithms which are necessary to use this representation in the constraint optimi-
sation are developed.
The di�erent FFD representations are all tested in an Evolution Strategy to opti-
mise a design with respect to match a given target.
The arrangement of this thesis is as follows. Section two of this chapter gives an
introduction to evolutionary algorithms especially the Evolutionary Strategy with
covariance matrix adaptation. Afterwards the basics of Free-Form Deformation and
the direct manipulation technique are discussed. Chapter two gives an overview of
already used Free-Form Deformation representations in design optimisation. In chap-
ter three the Evolution Strategy using the Free-Form Deformation as representation
is explained and its advantages and limitations are exposed. Chapter four details the
necessary constraint to keep the structural composition of computational grid. Dif-
ferent approaches to keep the constraint during the optimisation are explained and
compared. The adaptive representation is introduced in chapter �ve and compared
with the non adaptive representation. In chapter six the developed direct manipu-
lation FFD approach is explained. The last chapter contains the conclusion of the
results and di�erent further investigations are pointed out.

1.2 Evolutionary algorithms

Evolutionary algorithms are general-purpose search procedures and belong to the
group of stochastic algorithms. Mechanisms inspired by biological evolution, such as
reproduction, mutation, recombination, natural selection and survival of the �ttest,
are used to solve an optimisation problem. A set of candidate solutions, a so called
population, is adapted over several generations. In each generation new variations of
solutions, the o�spring population, are produced by a combinatoric and stochastic
operator, the recombination, and a purely stochastic operator, the mutation. The
best solutions with respect to the cost function, called �tness function in the �eld of
Evolutionary Algorithm, are selected for the next generation. Figure 1.1 illustrates
the cycle of an evolutionary algorithm.
It is supposed that evolutionary algorithms perform consistently well across all types
of problems because they do not make any assumptions about the �tness landscape.
It has not to be continuously and no derivatives have to be available. But the
absence of information about the �tness landscape leads to a higher amount of
�tness evaluations.
Popular examples of evolutionary algorithms are Evolution Strategies (ES), Genetic
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Figure 1.1: Optimisation cycle of an evolutionary algorithm [10].

Algorithm (GA) and Genetic Programming (GP). In this thesis Evolution Strategy
and a special variant, the Covariance Matrix Adaptation ES (CMA-ES), are used.

1.2.1 Evolution Strategy

Evolution Strategy was introduced by Rechenberg in the sixties and later re�ned by
himself[15] and Schwefel[19].
As shown in �gure 1.1 the Evolution Strategy starts with the initialisation of the
parent population. In the case of design optimisation, the initial parameterised shape
is encoded into the chromosomes of the individuals. These chromosomes represent
the genotype of an individual and contain the object parameter. In the case of an
ES they are encoded as continuous numbers.
Next the o�spring population is created by recombining the parents. In Evolution
Strategy this recombination is typically a linear combination of two or more solu-
tions, the mean of the whole population or an exact copy of one randomly chosen
parent.
Then the o�spring individuals are mutated by adding a gaussian distributed ran-
dom vector with zero mean (�gure 1.2) to the chromosomes. The variances σ2 of the
random vector, also called strategy parameters, are crucial for the ES. Evolutionary
progress takes place only within a narrow band (evolution window) of this strategy
parameter comparable with a step size. If the variance is too small, the optimisation

4



Figure 1.2: Gaussian distribution for two di�erent variances σ1 and σ2.

process will stagnate whereas an oversized mutation leads to a regression. Therefore,
they have to be adapted during the optimisation to the topology of the search space.
The realisation of this adaption is explained in the next section.
The strategy parameter allows conclusions about the current state of the search pro-
cess. Large strategy parameters indicate a global search whereas small parameters
point out the convergence of the optimisation process.
Once the o�springs are mutated, the chromosomes are mapped to the phenotype of
the design. The phenotype is the representation of the design used for the evalua-
tion. It determines the behaviour of the design in the �tness evaluation. Then the
�tness value for this design is evaluated and assigned to the o�spring. In case of
design optimisation normally a CFD simulation assesses the quality of the design.
After all o�springs are evaluated, the parents for the next generation are deter-
mined. Several selection methods exist. The best known are the (µ, λ)-selection and
the (µ + λ)-selection. In a (µ, λ)-selection the µ best individuals of the o�spring
population build the parents for the next generation. In contrary to the (µ + λ)-
strategy, which also considers the actual parents for the selection. Hereby, the best
individuals are always kept which leads to a monotone increasing quality progress.
On the other hand the (µ + λ)-strategy makes it more di�cult to overcome local
optima.
After the new parents are determined the algorithm starts with a new cycle. These
cycles are repeated until a stop criteria is reached. That can be speci�ed with re-
spect to the global strategy parameter, a �tness threshold or a maximum number
of generations.

1.2.2 Self-adaptation

As already mentioned the mutation strategy parameter plays an important role in
the Evolution Strategy. To adapt the variances, a self adaptation method is used.
The same optimisation process as for the object variables is applied to the strategy
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(a) N(0, σ2) (b) N(0, D) (c) N(0, C)

Figure 1.3: The ellipsoids depicting one line of equal density for three di�erent
gaussian distributions, where σ ∈ IR+, D is a diagonal matrix and C is a positive
de�nite covariance matrix. The dotted lines depict exemplary objective function
contour lines.

parameters. The di�erent approaches vary mostly in the number of strategy parame-
ters and the method of their adaptation. The gaussian distribution of three di�erent
self-adaptation strategies are shown in �gure 1.3. The circle and the ellipses depict
lines of equal probability. The probability of a random number decreases with the
distance to the centre. In the left image only a single strategy parameter is used for
all object variables. In this global step size adaptation (GSA) the variance for all
object variables is equal. Thus the lines of equal probability are always spherical.
In the middle �gure the individual step size adaptation (ISA) is applied. Every
object parameter has its own step size σi. The normal distribution is an ellipsoid
parallel too the axes of the coordinate system.
In the right �gure the normal distribution of a whole covariance matrix is shown.
Here, the ellipsoid can be arbitrarily oriented.
It is obvious that the adaptation to the topology of the search space for a single para-
meter is very limited whereas the use of the complete covariance matrix enables to
adapt arbitrary directions. A detailed description of the di�erent adaptation strate-
gies is given in the next sections.

1.2.2.1 Mutative adaptation of the strategy parameter

The mutative adaptation like GSA and ISA are the standard approaches. In these
approaches the strategy parameters are encoded additionally to the object variables
into the chromosomes of each individual. Thus the same optimisation process is
applied to them. The strategy parameter are passed on to the o�springs by recom-
bination and mutation like the object parameter. Because the object and strategy
parameter build one individual the selection of the best parameters is done indirectly
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by the selection of the best object parameters. Individuals whose strategy parameter
are better adapted to the �tness landscape have a higher probability to create an
o�spring with good �tness than others. As a consequence their genome has a higher
chance to survive.
The mutation of the object variables and the strategy parameters are de�ned as
follows:

σi(t) = σi(t− 1)e(τ
′
z)e(τzi)

−→z = N(
−→
0 ,−→σ (t))

−→x (t) = −→x (t− 1) +−→z
where z, zi are (0,1) normal distributed random numbers.
The strategy parameters σi are the elements of the vector

−→σ . Their log-normal dis-
tributed mutation consists of two parts: an overall part parametrised by τ

′
and an

individual part with variance τ . They are both �xed during the optimisation. The
strategy parameters σi determine the variance of the normal distributed random
vector −→z , which is added to the object parameters −→x of generation t− 1 to create
the o�spring population. The length of the vector −→σ depends on the used approach.
The GSA uses a single element whereas in the ISA their number is equal to the
number of the object parameters.

1.2.2.2 Covariance matrix adaptation

Hansen and Ostermeier[7] introduced a completely derandomised self-adaptation to
improve the performance of the Evolution Strategy. Their strategy consists of two
parts: the adaptation of the whole covariance matrix of the mutation vector and
the observation of the evolution path. The multivariate normal distribution N(0, C)
which is used for the mutation of the object parameters, enables to realise correlated
mutations and is invariant against rotations of the search space. As illustrated in
�gure 1.3(c) the ellipsoids of equal density have not to be axis parallel any more.
The adaptation of the covariance matrix is based on the correlation of the new par-
ent population and the path of evolution. This path is a sum of consecutive single
steps between the individuals. Using such a cumulation of steps stabilises the adap-
tation and furthermore yields to more promising predictions.
The evolution path is also used to adapt the global step size. A long path indicates
that the last single steps point to a similar direction. A higher step size would allow
to cover the same distance in fewer steps. If the evolution path is short that the last
steps have annihilated each other. Then shorter steps should be preferred. Hence
the global step size is changed according to the ratio between the expected and the
realised step size.
The CMA strategy furthermore reduces the stochastic in�uence because no random
numbers are used to update the strategy parameters.
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(a) Objects embedded into a plastic (b) The objects after deforming the plastic.

Figure 1.4: The control volume and embedded objects. The control lattice is also
shown. [20]

1.3 Free-Form Deformation

Free-Form Deformation (FFD) has been introduced by Sederberg and Parry[20] in
the �eld of solid and surface modelling. Instead of representing the geometry by
itself only the deformation of an initial geometry is de�ned. This initial design can
be given in any solid modelling scheme. A physical analogy for FFD is to imagine
a clear, �exible plastic. The objects which shall be deformed are embedded into
the plastic. Deforming the plastic forces the object to change similarly. Figure 1.4
illustrates this behaviour.
Mathematically the plastic corresponds to a control volume de�ned by a set of
control points. The embedding of objects is implemented by transferring every object
point X into a local coordinate system (1.5) with the directions U, V and W on that
parallelepiped volume.

X = X0 + uU + vV + wW

In the case of a parallelepiped volume the local coordinates (u, v, w) can be computed
with linear algebra:

u =
V ×W (X −X0)

V ×WU
, v =

U ×W (X −X0)

U ×WV
, w =

U × V (X −X0)

U × V W
,

The deformation of the plastic is speci�ed by changing the initial control points
coordinates Pijk and thus are used as object variables in an optimisation. The de-
formed position of an object point is then computed by evaluating a vector valued
trivariate Bernstein polynomial:

Xffd(u, v, w) =
l∑

i=1

m∑
j=1

n∑
k=1

Bi(u)Bj(v)Bk(w)Pijk (1.1)
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Figure 1.5: The local coordinate system [20].

where Bi(t) are the Bernstein polynomials of degree l,m and n. The degree deter-
mines the number of control points in the corresponding direction. The coe�cients
Pijk of the Bernstein polynomial are the Cartesian control point coordinates.
Free-Form Deformation has not to be applied on a whole object. It is also possi-
ble to use a control volume which only covers a part of the object. Then only the
object points which lie within the volume have to be embedded. The continuity at
the boundaries of the control volume can be reached by keeping the positions of
the boundary control points. To achieve derivative continuity of degree Ck, the k
adjacent planes of control points have to be kept �xed.
The Free-Form Deformation inherits the properties from the used Bernstein polyno-
mial basis functions. All deformations which can be produced with FFD are smooth
and the deformed points lie within the convex hull of the in�uenced control points.
Coquillart[3] extends the FFD by allowing arbitrary volumes and hence reduces lim-
itations of the possible deformations. An exemplary lattice is given in 1.6. In order
to have a mathematical correct de�ned control volume every line of the lattice has to
contain the same number of control points. But several control points can be merged
together and treated as a single point. This merging simply keeps the position of the
di�erent control points equal. To achieve tangent continuity at the merged points,
additional their tangents have to be marked as aligned.
Furthermore Coquillart uses B-splines in the deformation function instead of Bezier
curves. They consist of several Bezier segments which are linked together. The seg-
ments are speci�ed by a knot vector. Due to the piecewise de�nition, the in�uence
of one control point is local. The control point Pijk of a B-spline with degree p only
in�uences points inside the interval [ui, . . . , ui+p+1) in U direction. Figure 1.7 depicts
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Figure 1.6: An arbitrary control volume [3]

(a) B-spline of degree three (b) knot vector

Figure 1.7: B-spline and corresponding knot vector

a B-spline and its corresponding knot vector.
Due to the non-parallelepipedical lattice, arbitrary formed designs can be gener-
ated. The increased degree of freedom results in a higher computational e�ort for
calculating the local coordinates. This computation, also called freezing, is decom-
posed in two steps and performed separately for every spline segment. To speed up
the computation, �rst the points, which are supposed to lie within the segment,
are determined. Therefore the convex hull property of the splines is used. Then the
(u, v, w)-coordinates of these points inside the segment are calculated by a Newton
approximation. Figure 1.8 illustrates this steps in a one dimensional example.
Another important property in regard to the desired adaptive representation is that
the degree of freedom can be increased by inserting new control points without
changing the shape of the embedded object.
For the Bernstein polynomials the degree elevation algorithm can be used to enlarge
the variability of the deformations. In this process the degree of one of the three
basis functions is increased. To accommodate the enhanced degree of freedom, a
new control point is introduced into the lattice. Thereby new positions of all inner
control points are computed. Figure 1.9 shows an example. The control points are
distributed over the whole curve. Due to the trivariate de�nition, a new plane of
control point is inserted into the corresponding direction.
For B-splines the knot insertion algorithm can be used. Here a new point is inserted
in the knot vector of one direction to divide a spline segment. As a consequence a
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Figure 1.8: In the �rst step the points inside the convex hull of the control points
which have in�uence on the current spline segment (blue segment) are determined.
Afterwards the spline parameter u of these points (green) is computed by a Newton
approximation. Only for the point within the current segment this is possible.

Figure 1.9: A Bezier curve before and after applying the degree elevation algorithm.
The red points depict the inner points before the re�nement. After the degree eleva-
tion their positions have been changed. The �gure also shows that the whole curve
is re�ned.

new plane of control points for this direction is created. In contrast to Bezier curves
the positions of only a few control points have to change. When inserting a new
point u ∈ [ui, ui+1] into the knot vector only the positions of the control points
P(i−n+1)jk, . . . , P(i−1)jk∀j, k have to be computed. All other points are kept.
More about this re�nement property is written in 5. In the following FFD will always
point to the extended Free-Form Deformation from Coquillart. As basis functions
B-splines of degree 3 are used. They promise a good trade o� between locality and
�exibility.
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(a) Control lattice, object point and tar-
get deformation before the deformation

(b) Control lattice and object points af-
ter the deformation

Figure 1.10: Speci�cation and result of an direct manipulation of Free-Form Defor-
mation.

1.4 Direct manipulation of Free-Form Deformation

The direct manipulation technique of FFD (DMFFD) has been introduced by Hsu,
Hughes and Kaufman[9] in the context of object modelling to get a more intuitive
interface and to increase the control of the deformations. The approach is based on
the Free-Form Deformation method, but the deformations of a shape are speci�ed
directly by a set of object points and their target positions instead of the control
point displacements.
First the design to modify has to be embedded in a Free-Form Deformation control
volume by computing the local coordinates. To specify the modi�cations of a shape,
the user selects some object points and determines their desired target position.
As object points arbitrary points inside of the control volume can be used. Their
positions have to be given in the U, V,W coordinate system. Typically some points
of the embedded design are chosen. Then the information is used to compute new
coordinates for the control points to hit these deformations. An example is given in
�gure 1.10.
To match the desired object point displacements, the following system of equations
has to be solved:

∆X = B∆P

where ∆X contains the displacement of the object points speci�ed by the user in
the Cartesian coordinate system, B is the matrix of the B-spline tensor product at
the object points and ∆P contains the shift of the control points. When the object
point displacement ∆X is given, Hsu uses the pseudoinverse B+ of B to compute
the new positions of the control points.

∆P = B+∆X (1.2)
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The solvability of the problem depends on the number of object points and the lat-
tice of control points. When the number of object points is less than the number of
control points which in�uence them, the problem is under-determined and a set of
solutions exists. If their numbers are equal, only one solution exists. If more object
points than control points, which can in�uence them, are selected, no exact solution
exists. To get an exact solution, a �ner lattice of control points is needed.
The use of the pseudoinverse allows to calculates the solution with the minimal error
independent of the solvability. If no exact solution exists, the distance between the
attained and desired object points positions is minimised. If several exact solutions
exist, the approach additionally minimises the changes of the control point positions
∆P , because the pseudoinverse gives the least-squares solution.
To represent a design in an optimisation with the direct manipulation, some points,
which lie on the design, are selected as object points. The target positions of these
object points specify the deformation and allegorise the object variables which are
subject of the recombination and mutation in every optimisation step.
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Chapter 2

State of the art

Many di�erent techniques have been developed for design representation. A good
overview is given by Samareh in [17]. A method easy to implement is the discrete
representation, where the design is represented by points of its boundary (�gure
2.1). However, in this representation it is di�cult to maintain the smoothness of
the shape. Therefore additional constraints are required. Furthermore for complex
designs a huge amount of object parameters is necessary to represent all boundaries
exactly. That leads to a costly and di�cult optimisation problem.
One of the most popular approaches are the polynomial and spline based represen-
tations. The boundaries of the shape are represented by a polynomial or spline curve
speci�ed by a set of control points. Di�erent polynomial and spline de�nitions are
possible as e.g. Bezier curves, B-splines or nonuniform rational B-spline (NURBS).
Dependent on the used basis function an arbitrary smoothness can be achieved im-
plicitly and thus the smoothness problem of the discrete approach is solved. Figure
2.2 shows an example of an airfoil. Besides the number of parameters is reduced
drastically in comparison to the discrete approach. However, for complex shapes
containing many edges and ridges still a large set of control points is required.
The Free-Form Deformation is used by Samareh [16] to represent a design in an op-
timisation. He wants to optimise a complete aeroplane con�guration with low and
high-�delity analysis tools. The models for the analysis are based on computational
grids which represent some or all components of an aeroplane. Two di�erent mod-
els are used: computational �uid dynamics (CFD) grids used for the aerodynamic
analysis and the computational structural mechanics (CSM) to represent the all

Figure 2.1: Discrete representation of an airfoil [17].
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Figure 2.2: Spline representation of an airfoil [17].

aeroplane components. Building these grids from a computer-aided design (CAD)
model is very time consuming and needs a huge amount of problem speci�c knowl-
edge. Furthermore this generation needs human interactions. Due to this manual
grid generation, an automatic optimisation is not possible. In every optimisation
step these grids have to be build to evaluate the quality of the design.
To avoid such a re-meshing procedure he uses the FFD to represent a wing planform.
He combines the FFD with NURBS as basis function with further soft object ani-
mation methods to represent deformations of an initial design. For this initial design
the computational grids have to be created. Since the FFD and the soft animation
methods represent the deformation rather than the geometry itself, the deformation
can be applied to the computational grids too and thus avoid the costly re-meshing
in every optimisation step. Furthermore these methods are independent of the grid
topology and thus both grids (CFD and CSM) can be treated equally.
The described representation is especially adapted on the wing optimisation prob-
lem. A huge amount of problem speci�c knowledge was used to build the control
volume of the Free-Form Deformation to reduce the number of object parameters.
In [18] Samareh uses a bivariate FFD for aerodynamic shape optimisation based on
a gradient approach. He shrinks the trivariate volume along one coordinate direction
and thus reduces the number of design variables by an order of magnitude, while
retaining the required �exibility.
Ernest C. Perry and Steven E. Benzley [14] introduced arbitrary shape deformation
(ASD) for the optimisation of three dimensional �uid �ow systems. They use the
FFD as representation to get a general methodology for the parameterisation of
three-dimensional shapes for �uid �ow systems.
Moreover similar to Samareh they want to avoid the re-creation of the required CFD
mesh for every modi�ed design during the optimisation. Therefore they use the con-
trol lattice to deform the computational grid simultaneously to the shape.
Their test problem is an optimisation of a tee �tting with a gradient-based Sequential
Quadratic Programming method. They achieve a solution which provides entirely
new, non intuitive features and reduces the static pressure signi�cantly.
A multilevel Free-Form Deformation representation is used in [1][4] by Ales Janka
and Jean-Antoine Désidéri to speed up the convergence. They apply the degree el-
evation algorithm to increase the degree of freedom of the used Bezier FFD control
volume. The degree is enlarged three times after a certain number of optimisation
steps. To compare their multilevel approach with �xed representations of di�erent
degree they optimise the planform of an aeroplane wing to reduce the drag. For the
optimisation they use a Nelder and Mead simplex method and a Genetic Algorithm.
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In the case of the simplex method the use of their multilevel representation could
speed up the optimisation in relation to the �xed representation whose degree is
equal to the one used �nally in the multilevel approach. This speed up can be ex-
plained by the faster convergence at the beginning of the multilevel process. The
quality of the solution achieved by the multilevel approach is similar to the one
achieved with the �xed representation using the high degree. In the Genetic Algo-
rithm the adaptive representation also speeds up the optimisation, but the repre-
sentation with a �xed and high degree leads to a better solution. They suppose that
this can be ascribed to their elevation strategy used for the Genetic Algorithm. The
elevation is only applied to the best individual whereas all others are re-initialised.
An adaptation of a control volume cannot be achieved with this multilevel approach.
The use of Bezier curves as basis function of the Free-Form Deformation limits the
possible re�nements. Due to the de�nition of Bezier curves where every control point
e�ects the whole Bezier curve, only one re�nement possibility exists. Furthermore
the degree elevation always re�nes the whole curve. A re�nement at a certain area
of the design is not possible.
Additionally the re�nement of a Bezier curve changes all inner control points. In
an Evolution Strategy this disturbs the self adaptation. The information about the
search space accumulated in the strategy parameters becomes useless because the
in�uence of the control points on the design is altered. Thus the strategy parameters
have to be adapted again.
For designs where local deformations in a certain region are crucial for the quality
many re�nements have to be applied until these local modi�cations are possible.
This leads to an unnecessary amount of optimisation parameters.
At the Honda Research Institute [11] an Evolution strategy with an adaptive FFD is
used to optimise a 2D airfoil. Their aim of the adaptive representation is to solve the
trade-o� between compactness and completeness and to keep the amount of required
problem speci�c knowledge to build a proper representation as small as possible.
For the adaptation of the B-spline FFD, the idea of sub-populations is applied. The
degree of freedom is increased by an explicit insertion of new control points whose
positions in the lattice are randomly chosen. The coordinates of the new control
points are calculated by a linear interpolation of the neighbouring control points.
After evolving several di�erent populations for ten generations the population with
the best performance is selected to proceed. Its representation seems to provide the
most useful variability.
They also want to realise a search in sub-spaces. A coarse representation at the
beginning of the optimisation shall enable to �nd promising areas. Then the rep-
resentation is re�ned to allow new variability. Because the strategy parameter of
the old object variables are typically decreased, the search is limited to the actual
region.
Their introduced approach has some drawbacks. Due to the explicit inserting of new
control points, the previously modi�ed shape has to be frozen again. For complex
designs and especially for the CFD mesh this computation is a costly operation.
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Refreezing changes the in�uence of the control points and hence the self-adaptation
of the strategy parameter is disturbed. Thus the re�nement is similar to a restart
with a �ner control volume.
The direct manipulation extension is used as representation in an optimisation for
the �rst time at the Honda Research Institute [12]. They want to analyse the e�ect
of this representation on the optimisation. They assume that the use of the direct
manipulation reduces the in�uence of the initial control volume and additionally
increases the impact of the design variables on the design. Therefore a two dimen-
sional turbine blade is optimised with a CMA-ES. For the evaluation of the �tness
function a CFD-simulation is used. In order to avoid a re-meshing procedure the
used CFD mesh is deformed simultaneously with the design.
To validate their assumptions they compare a general FFD representation with the
direct manipulation approach. For the direct manipulation tests they use two dif-
ferent numbers of object points and two control volumes with a di�erent number of
control points. The coarser control volume consists of a 4× 4 grid whereas the �ner
uses a 6× 6 control points. For the general FFD approach the coarse grid is used.
They could show that the direct manipulation speeds up the optimisation while a
similar �tness value is achieved. Furthermore the use of the di�erent control volumes
in the direct manipulation does not in�uence the convergence behaviour much. The
�tness and the convergence behaviour mainly depends on the used object points.
They mention one problem of their approach. Their direct manipulation approach
can destroy the structural composition of the CFD mesh if a �ne control lattice is
used. But �ne grids are needed when local modi�cations are required to improve
the quality. Since the use of the pseudoinverse only moves control points which have
in�uence on the object points, in �ne control lattices very large local deformations
are applied. These deformations change the order of the CFD mesh points and lead
to invalid meshes.
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Chapter 3

Free-Form Deformation as

representation

The kind of representation is a very important part in the optimisation. The rep-
resentation determines the search space. Only designs which can be coded by the
representation can be found by the optimisation. The representation has to be �ex-
ible to provide a large variation of designs. That requires a large number of parame-
ters, especially for the representation of complex designs containing many edges and
ridges.
On the other hand the search space should be as small as possible to reduce the
number of possible shapes which enables a fast convergence of the optimisation.
Using Free-Form Deformation as representation allows a good trade o� between
completeness and compactness. Especially for complex shapes, which require a huge
amount of parameters to be represented, the number of parameters can be reduced
while still a high variability is provided. In the FFD the moveable control points of
the lattice are used as object parameters. Since they are decoupled from the em-
bedded design, their number can be chosen independent of the design. Also very
complex designs can be represented with a few parameters. The number of object
points can even be chosen with respect to the optimisation state. If the initial design
is a roughly approximation of the optimum, a coarse grid can be used to improve
the performance of the design very fast by applying global changes. If the embedded
shape is already a good approximation, a �ner grid can be used to enable more local
changes in order to improve the design further. The representation of the embedded
design has not to be changed for the di�erent control volumes.
In context of evolutionary algorithm the representation speci�es the map from geno-
type to phenotype. One important property for this map is that changes in the geno-
type result in similar changes in the phenotype. Small modi�cations of an object
parameter should lead to small changes of the shape whereas large modi�cations
should result in large shape changes. This strong causality constraint is essential to
ensure that the self-adaptation of the mutation strategy parameters works.
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(a) undeformed control volume 1 (b) deformed control volume 1

(c) undeformed control volume 2 (d) deformed control volume 2

Figure 3.1: The �gures show the in�uence of the control point positions on the
possible deformations. The two control volumes di�er only in the positions of the
two inner columns of control points. The design deformed with control volume 1
cannot be produced by control volume 2. For control volume 2 the rectangle will
always be on the top of the hill and never on the right slope.

Free-Form Deformation ful�ls this strong causality property. Small modi�cations of
a control point lead to small deformations of the shape whereas large modi�cations
result in large shape changes.
Another very important advantage of the FFD occurs when a CFD or FEM simula-
tion is used to evaluate the performance of a design. The generation of the required
CFD grid for every evaluation can be avoided. Instead of this costly computation,
the deformation of the design is applied to the grid too. To maintained the structural
composition of the grid after the deformation, the deformation has to be restricted.
More about this restriction is explained in section 4.
A drawback of the Free-Form Deformation is the in�uence of the control point po-
sitions on the deformation of the embedded object. This in�uence is illustrated in
�gure 3.1. Dependent on the initial lattice, some deformations cannot be achieved.
Therefore it is necessary to place the control points in the sensitive areas of the
design. This placing requires problem speci�c knowledge and comprehension about
the behaviour of splines. If the sensitive areas are unknown, a proper control lattice
cannot be build.
Furthermore the in�uence of the control points decreases with the distance. The
largest deformations are applied close to the control points. To maximise their in�u-
ence on the shape they have to be placed close to the embedded design. But due to
the local de�nition of the B-splines the in�uence of the neighbouring control points
is already smaller even if they are placed near the design (�gure 3.2). Some of the
control points even have no in�uence.
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Figure 3.2: Point P73 has the largest in�uence on the embedded circle. The impact of
point P83 is smaller due to the larger distance. The in�uence of point P63 is smaller
because of the local de�nition of the B-spline function used in the FFD.

One option to overcome the problem of �nding the sensitive regions is to adapt the
control volume automatically by re�ning the control lattice. Therefore one has to
determine promising positions for the new control points and to decide when the
control volume should be re�ned. Such an adaptive FFD representation is developed
in chapter 5. The problem of maximising the in�uence of the control points can be
reduced by the direct manipulation of Free-Form Deformation. Here the deformation
is not speci�ed by the control points but directly by a desired deformation of the
object. The direct manipulation approach is represented in chapter 6.

3.1 Implementation

The Evolution Strategy with Free-Form Deformation as representation is imple-
mented in C/C++ for 2D and 3D problems. The 2D program is still based on a 3D
FFD volume but projects it onto 2D.
Because the Evolution Strategy can easily be parallelised a master/slave architec-
ture, runnable on a cluster is used. For the communication between master and
slave the cppvm library [6], an C++ interface to the parallel virtual machine soft-
ware package, is used.
For the operations and data types required for the Evolution Strategy the shark
library [21] is used. The implementation of the Free-Form Deformation operations
like freezing, deforming and insertion are provided by HRI.

3.1.1 Encoding

In the FFD the designs are speci�ed by the control points. The coordinates of the
control points, which are allowed to move, are used as object parameter and have
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Figure 3.3: The movement of the control point is scaled dependent on the distance
δij of the adjacent points in the corresponding direction. A large movement of P16

would change the order of the control points, whereas small movements would require
many steps to achieve a large deformation.

to be encoded into the chromosome of the individuals. This encoding is done in the
following way:
Each individual consists of four chromosomes. The �rst holds the object variables.
They contain the displacement of the control points relative to the initial positions.
Additionally they are scaled with the distance δijk of the adjacent points of the ini-
tial control lattice. This scaling aids to keep the order of the control points. Keeping
the order of the control points is similar to the constraints which is introduced in
chapter 4 to keep the structural composition of the computational grid. Figure 3.3
illustrates the bene�t of this scaling. Without the scaling a large displacement would
change the order of the control point P16 with a high probability, whereas for point
P8 the same displacement will still maintain the order. A smaller shift would also
keep the order at point P16 but then the deformations are small. To achieve large
deformations in the region of point P8 several step are required. The scaling allows
that the movement of points, which are far apart, is larger than the movement for
points, which are close together. Even if the same strategy parameter is used. Thus
in areas with a few control points large deformations can be achieved in less steps
while the order is also kept in the dense areas of the control lattice.
The displacement is divided into the three di�erent directions (x, y, z). To deter-
mine which control point and which direction is speci�ed at a certain position in
the object chromosome a unique number specifying the position of the control point
in the lattice and the direction (x, y, z) of the movement is saved in two separated
chromosomes. Figure 3.4 depicts the encoding of an exemplary control lattice.
The strategy parameters are encoded in a further chromosome.
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(a) The genotype (b) The corresponding control
lattice.

Figure 3.4: The encoding of a control lattice.

parameter name description

λ number of o�springs
µ number of parents
σ0 initial mutation step size
Strategy strategy for self adaptation

0 - CMA
1 - global step size adaptation
2 - individual step size adaptation

Generations max. number of generations

Table 3.1: Parameter for Evolution Strategy

3.1.2 Evolution cycle

The program starts with the initialisation of di�erent parameters which determine
the Evolution Strategy. They are listed in table 3.1. They have to be determined by
the user in a parameter �le.
This parameter �le also speci�es the input data containing the initial shape and
the initial control lattice. The shape has to be given as a set of point. The control
volume is de�ned by a 3D control lattice, the degree p and the three knot vectors of
the B-splines.
After loading this data, the initial shape is frozen. Then the �rst population is build
by encoding the moveable control points of the initial lattice into the chromosomes.
Afterwards the evolution cycle depicted in �gure 3.5 begins. The generation and
evaluation of the o�springs is parallelised to speed up the optimisation. The master
selects a free host, starts the slave process there and sends a random parent for the
o�spring. When all hosts are busy or for all o�springs a slave was already started,
the master switches into the receiving mode and waits for the slaves.
When the slave has received the parent, the o�spring is generated by copying the
parent. Then the o�spring is mutated according to the selected strategy. To evalu-
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ate the �tness of the design, �rst the control lattice is decoded from the genotype.
The next steps of the program depends on the approach which is used to solve the
constraint optimisation. Two di�erent approaches, a penalty function (4.1.1) or a
correction method (4.1.2) can be used.
In the case of the correction method in the next step the control lattice is checked if
it ful�ls the constraint which keeps the structural composition of the computational
grid. If this test fails, the lattice is corrected. Afterwards the corrected control points
are coded back into the chromosome. In the case that the grid could not be corrected
the slave creates a new o�spring.
The penalty approach skips these steps.
The decoded control lattice is then used to deform the frozen shape according equa-
tion (1.1). Afterwards the �tness is evaluated and assigned to the o�spring. The
used �tness function also depends on the approach used to solve the constraint op-
timisation. The exact formulations are given in the next section. The penalty terms
used in the penalty methods are explained in section 4.1.1.
After the �tness is evaluated the slave sends the new o�spring back to the master.
When it has received all λ o�springs, the selection operator is applied. The µ best
o�springs are selected to build the parent population for the next generation.
When the termination condition is ful�lled, the evolution cycle is interrupted and
the results are saved. This termination condition can be speci�ed by a �xed number
of generations or a �tness threshold.
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(a) Initialisation (b) Evolve activity in detail.

Figure 3.5: Activity diagram of the program using the correction method. The ac-
tivities inside the box are performed by the slave.
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Figure 3.6: Gas turbine and a turbine stator blades with hub and tip section [8]

3.2 Test problems

Two problems should be solved to test and compare the Free-Form Deformation
representation with the introduced adaptive Free-Form Deformation and direct ma-
nipulation. To keep the computational e�ort low, two dimensional target matching
problems are chosen. An initial shape de�ned by a set of points, has to be deformed
to match a given target point set. As target a dolphin and a turbine stator blade
are used.
The dolphin test is an arti�cial problem. As initial shape for the dolphin a circle
is used. Here large deformations are necessary to match the target. The �ns con-
tain strong local curvatures which requires that the control points move in di�erent
directions. It is di�cult to keep the additional constraint which in a practical prob-
lem would maintain the structural composition of the computational grid. In the
dolphin test problem this constraint is used to prevent that the deformed shape
contains loops.
The turbine blade problem was selected to have also a practical problem. The blade
is part of a gas turbine used in jets (3.6) and was already optimised in [8] with a
CMA-ES. There the D turbine blade consists of a hub and a tip section which are
both represented with a closed non-uniform rational B-splines (NURBS). To obtain
the 3D stator blade they interpolate both curves linear. They evaluate the �tness
with an in-house Navier-Stokes �ow solver which is adjusted to the given problem
and uses a structured grid. Thus it was possible to mesh the design automatically.
In this thesis the initial and optimised designs are used to de�ne a target matching
problem. Both initial designs have to be deformed to match the optimised shape.
The control volume which deforms the initial blade to the target shall be found.
To get a 3D control volume both lattices are linear interpolated. This control lat-
tice then is used by another group to deform also an unstructured grid which was
generated for the initial design. The aim is to show that the FFD is able to de-
form the computational grid and a re-meshing can be omitted. The results of the
CFD-simulation of the deformed design and mesh should be analysed. The initial
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Figure 3.7: The initial shape, target shape and the control lattice for the dolphin
test problem.

and target designs of the hub and tip section and their control volumes are shown
in �gure 3.8. In this diploma thesis only the results of the target matching problem
using the hub section will be shown because the tip section is very similar.
In all target matching problems the �tness function to achieve the matching cal-
culates the average distance between the two point sets. For every point of the
deformed shape the minimal distance to the target is computed and vice versa.
Mathematically the �tness for the two point sets X and Y is de�ned by:

f(X, Y ) =
1

|X|+ |Y |
∑
x∈X

miny∈Y (‖x− y‖)2 +
∑
y∈Y

minx∈X(‖y − x‖)2 (3.1)

This function has to be minimised.
The control lattice used for the representation is shown in �gure 3.7 and 3.8. For the
dolphin case the lattice consists of 14× 14 control points. For the dolphin problem
also other volumes have been tested. But using a �ner grid does not achieve better
results. Whereas using a coarser lattice is not able to match the target as good.
The rows and columns of control points are placed near the circle to increase their
in�uence. The control lattice for the turbine blade problem is adapted by hand. The
density of the lattice is highest in the region of the trailing edge where the most
local deformations are required to match the target.
In all optimisation test runs the inner control points are allowed to move in x and
y direction. The points of the boundary are always kept �x. In the case of CFD
simulations this is required to keep the continuity at the boundaries. This result
in 288 object variables for the dolphin test and 510 for each turbine blade. This
number is much higher than in the NURBS representation used in [8], but the FFD
representation is developed for complex designs which are not representable with
splines easily. Furthermore the spline representation is not practicable if the CFD
mesh generation have to be done manually like in the case of unstructured grids for
designs with many edges.
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(a) hub section

(b) tip section

Figure 3.8: The initial shape, target shape and the control lattice for the turbine
blade problem.
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Chapter 4

Mesh deformation

In the context of shape optimisation the quality is usually de�ned on �ow properties.
To evaluate these properties, a computational �uid dynamic simulation is necessary.
This simulation calculates the �ow by a discretisation of the problem with an com-
putational grid. To achieve realistic simulations, the mesh has to be adjusted to the
shape. Since the shape is changed in every optimisation step, the computational grid
has to be adjusted again.
Adapting the mesh can be realised in two ways: creating a new mesh or repairing the
existing one. For complex designs these methods often requires human interactions
which prevent an automatic optimisation process. Automatic meshing methods for
unstructured grids are only available if the method is adapted to the given problem
or the design is very simple and does not contain many edges and ridges. Further-
more the meshing requires costly computation time. In such cases a re-meshing
procedure is not practicable.
Representing the shape with Free-Form Deformation allows to deform mesh and
shape simultaneously. The quality of the mesh is kept and a costly re-meshing can
be avoided. This can be realised as follows:
Before the optimisation starts a computational grid for the initial shape needs to be
created. Together with the shape this grid is then embedded into the FFD control
volume. This costly computation of the local coordinates is needed only once. If only
a part of the CFD mesh is within the volume, continuity to the outlying mesh is
guaranteed by �xing the control points of the boundary.
Before the �tness of a shape is evaluated the encoded design and the initial com-
putational grid are deformed with the same control lattice. The mesh will follow all
deformations applied to the shape. This technique has already been applied success-
fully in several optimisations [4][14][11].
Using Free-Form Deformation for repairing the mesh requires limitations on the de-
formations. The deformations can destroy the structural composition of the mesh.
Large deformations can change the order of the grid points. That creates meshes
with overlapping cells and cells with negative volume (�gure 4.1). Such destroyed
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(a) Invalid mesh (b) Valid mesh

(c) Invalid mesh (d) Valid mesh

Figure 4.1: The pictures show the deformation of equidistant grid points. On the
left side the order of the grid points has changed. On the right the control points
are corrected with the algorithm from 4.1.2. In the lower �gures the critical area is
zoomed.

meshes cannot be used in a CFD-simulation. In such cases a new mesh for the de-
formed shape has to be generated.
Restrictions are also necessary to avoid self-intersections of the shape. Large control
point displacements can lead to loops of the shape (�gure 4.2). Such designs are
typically incorrect because they violate manufacturing conditions. For the target
matching problems loops also have to be avoided. Both mesh and shape can be kept
feasible by the same restrictions which prevent self-intersections.
Restrictions on the deformations have to be made by additional constraints to the
displacements of the control point. These restrictions have to be chosen carefully. On
the one hand invalid shapes and meshes have to be avoided while on the other hand
the deformations should still be as large as possible to achieve a high �exibility.
Gain and Dodgson introduced in [5] an injectivity test to prevent self-intersections
for FFD. They developed an exact but computationally costly and an e�cient but
only approximate injectivity test.
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Figure 4.2: Intermediate result of a target matching problem with an unrestricted
Free-From Deformation. The shape contains several self intersection.

Figure 4.3: A Free-Form Deformation failing the approximative self-intersection test
of [5]. However, the deformation is free from self-intersections. The convex hull con-
straint is satis�ed by the displayed control lattice.

Both tests are based on the existence of continuous �rst partial derivatives and
the Jacobian J of the deformation function (1.1). The Free-Form Deformation is a
homomorphism if the determinant of the Jacobian, det(J), is positive. The exact
approach is necessary and su�cient but even for small control volumes too time
consuming to perform. The test has to be performed before every �tness evaluation.
That increases the time required for one optimisation step.
Their e�cient test which approximates the determinant is very restrictive. Only very
limited deformations are possible. Figure 4.3 presents a small Free-Form Deforma-
tion which does not ful�l the e�cient test, but the deformation is free from self-
intersections. The accuracy of the test can be increased by recursively subdividing
the control volume. However, the subdividing process increases the computational
e�ort.
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Figure 4.4: The cell of the black control point for two dimension. The corresponding
convex hull is highlighted in grey. To ful�l the convex hull constraint, the black
control point has to lie within that area.

4.1 Convex hull constraint

A constraint which provides good results and is already used at the Honda Research
Institute is the convex hull constraint. There exists no proof that this constraint can
not lead to invalid computational grids but at HRI the use of this constraint has
successfully maintained the CFD mesh.
The convex hull constraint demands that every control point is inside the convex
hull of its adjacent control points. Mathematically the following equation describes
this constraint for control point Pijk:

Pijk =
26∑
l=1

λlPl : ∀λl ≥ 0, Pl ∈ {Pi−1,m−1,n−1 . . . Pi+1,j+1,k+1} \Pijk

This constraint can be checked successively for every control point. For point Pijk

of the lattice a cell of 3× 3× 3 control points containing the neighbouring points is
build. Then the convex hull of this cell is determined. Figure 4.4 depicts a control
point and the convex hull of its cell in a 2D case. In the implementation the incre-
mental algorithm from computational geometry [13] is used to calculate the hull.
This algorithm starts with four points which build a convex polyhedron. Then the
remaining points are added one by one. If the added point lies outside the current
polyhedron, the current convex hull is updated. After all cell points are added it is
tested if the control point Pijk is within the convex hull.
Using these limitations for the control point movement leads to a constrained opti-
misation problem. Several methods are possible to treat these restrictions. A good
overview of di�erent approaches for EA is given in [2]. In the following sections the
used approaches and their results are discussed.

32



4.1.1 Penalty function

A technique often applied in constrained optimisation are penalty functions. The
idea is to transform a constrained optimisation problem into an unconstrained prob-
lem by adding a penalty term to the �tness function. This penalty has to be pro-
portional to the constraint violation and is scaled with a weight which can be static
or increased over the optimisation steps.
This weight is crucial for the optimisation and has to be chosen carefully. A large
value discourage the exploration of the invalid regions of the search space. If several
feasible disjoint regions exist, the algorithm will move to one of them and never leave
it again. On the other hand a low penalty term will spend a long time for exploring
the invalid regions. Besides, it is more likely that the �nal result of the optimisation
is invalid.
One problem of the penalty approach in the case of CFD-simulations is that the
regular quality function needs to be skipped due to the invalid computational grid.
Thus the quality of an invalid solution depends only on the violation of the con-
straint. In the best case the results of the CFD-simulation can be approximated by
similar but valid solutions. But such solutions are not easy to found.
Two di�erent penalty approaches have been tested. In both cases the penalty func-
tion is proportional to the violation of the convex hull constraint. The violation is
calculated by approximating the distance of the invalid control points to the convex
hull of the corresponding cell.

p(x) = C
∑
i,j,k

‖Pijk − S‖2

Here C is a static penalty factor and S the intersection of the convex hull and the
connection line between control point Pijk and the centre of its cell.
The �rst penalty function only depends on the violation of the constraint. The eval-
uation of the original �tness function is skipped. To ensure that infeasible solutions
have a higher �tness, the penalty term contains additionally a constant value higher
than the quality of feasible shapes. The �tness is de�ned as follows:

fp
′ (x) =

f(x) if x is feasible
p(x) + c otherwise

(4.1)

where p(x) is the penalty function as described before, and c is a constant o�set.
In the second penalty function the constant factor is replaced with the �tness value
of an approximated feasible solution. This solution is calculated with the correction
algorithm described in the next section. If a correction was not possible, the same
o�set than in (4.1) is used.

fp′′ (x) =
p(x) + f(x

′
) if x′ is available

p(x) + c otherwise
(4.2)
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where x
′
is the corrected solution of x.

However, the presence of an approximation enables also a more promising approach
to solve constrained optimisation problems. Such an approach is explained in section
4.1.2.

4.1.1.1 Death penalty

Another way similar to the use of a penalty function is to reject invalid o�spring and
create new ones until a feasible solution is found. This approach, also called death
penalty, can only produce valid solutions.
A drawback of this approach is that no information from the infeasible search space
are exploited to guide the search. It can take a long time until a valid control point
set is created. In fact it is not even ensured that a valid lattice is created ever. This
drawback especially appears if the optimum requires large deformations as in the
dolphin problem. For example in the dolphin case the number of mutation trials
increases drastically during the optimisation. After 150 generations thousands of
reproductions were necessary until a valid o�spring was found.
To increase the probability of getting a valid o�spring, the mutation step size can
be decreased. But the reduction of the step size leads to a small variance in the
o�spring population. This results in a stagnation of the optimisation and prevents
that the optimum is found.

4.1.2 Correction algorithm

A more sophisticated way to ful�l the convex hull constraint is to repair the control
lattice. A correction algorithm has been developed which moves the control points
so that the constraint is satis�ed. To minimise the changes of the deformation, the
displacement should be as small as possible. But this optimisation problem requires
a considerable computational e�ort. Therefore a simpler algorithm which uses a
small but not minimal displacement is applied.
In a random sequence all control points are tested if the convex hull constraint is
hold. If an invalid point Pijk is found, it is moved towards the centre of gravity M
of its cell. Due to the random order, all control points have the same probability to
keep their position. No control point is privileged. Otherwise it could happen that
always the same control points are moved back. The length t of the displacement is
determined by the intersection S of this connecting line with the convex hull and an
additional small o�set ε. The intersection is computed by solving a linear system of
three equations for every face of the hull. The correct intersection point is found if
the point S lies within the face.
The new position P

′

ijk is calculated by the following equation:

P
′

ijk = Pijk + t (M − Pijk) , t = ‖S − Pijk‖+ ε
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Figure 4.5: The invalid control point Pijk is moved to the new position P
′

ijk. M is
the centre of the cell.

(a) before correction (b) after correction

Figure 4.6: The control points of an exemplary control volume. In the left �gure
the marked points violate the convex hull constraint whereas on the right their
coordinates are modi�ed by the correction algorithm.

The correction of one control point is illustrated in Figure 4.5.
After shifting the invalid point Pijk, the cells are checked again. This iteration is nec-
essary because the displacement alters the convex hull of other cells. This can result
in violations of the constraint at neighbouring control points. Chains of displace-
ments can be generated. To interrupt potential in�nity chains, a maximal number
of iterations is introduced. These chains can especially occur if not adjacent control
points change their position1. But since the modi�cations of the coordinates are lim-
ited by the mutation step size, such chains should be unlikely. Figure 4.6 represents
the result for an exemplary 6 × 6 control volume in 2D before and after applying
the correction algorithm.

1Two adjacent cells are mirrored over their conjointly edge.
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(a) �tness (b) maximal and minimal σ2

Figure 4.7: The �tness progress of the dolphin test problem with the correction
algorithm and CMA A. The value of the global strategy parameter is not reduced.

4.1.2.1 Interruption of self adaptation

With the introduction of the correction algorithm into the optimisation a problem in
context of the CMA self adaptation of the mutation parameters occurs. The Shark
library provides two di�erent CMA implementations. One of them, called CMA
A in this thesis, encodes the covariance matrix and the evolution path into the
chromosomes of each individual similar to the global and individual self adaptation.
This implementation updates the parameters immediately after the mutation is
applied. The correction is applied after the mutation and the strategy parameter
update. It changes the object variables. These changes can lead to a reduction of
the attained variance. As explained in section 1.2.2.2 in this case the global step size
should be reduced. But the update is based on the uncorrected object variables, and
thus the step size is kept. So the global strategy parameter always increases and the
ES does not converge. Due to the large mutation, the �tness even increases (�gure
4.7).
To overcome this problem, the global step size is reduced proportional to the required
correction. This reduction has to be done carefully. If the step size is reduced too
much, the process converges to a local optimum. Two di�erent approaches for the
reduction of the global step size have been tested. In the �rst test (CD1) the global
strategy parameter are reduced accordingly to the length of the required control
point repairing:

σ2′
= σ2 1

exp(lr/c)

where lr is the sum of the control point displacement of the correction algorithm
and c a constant scaling factor. The exponential function should prevent that the
search is going to far into the invalid area. But this function leads to a small step
size which leads to a convergence at a local optimum in the area of the chest �n
(�gure A.3).
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Therefore in the second test (CD2) the above described function is only applied if
the algorithm was not able to repair the control lattice. As �gure A.4 illustrates
the higher step size allows to overcome the local optimum in the area of the chest
�n, but the algorithm does not converge clearly. As one can see the global strategy
parameter rise again.
In both cases the additional reduction of the global strategy parameter cannot re-
pair the corrupted self adaptation. As soon larger modi�cations are applied by the
correction algorithm the �tness rises due to the wrong adapted global strategy para-
meter.
Later another CMA implementation (CMA04) was used which provides a sepa-
rate update function. This implementation does not encode the parameters into the
chromosomes and uses the same parameters for all individuals. The update of the
strategy parameters is carried out after the selection and is based on the attained
variance. The changes in the genotype caused by the correction algorithm are consid-
ered by the parameter adaptation. The step size is reduced if the attained variance
in the new parent population is smaller than the expected. Hence, the additional
reduction as for the CMA A can be omitted.
The results of this approach (CD3) are shown in A.5. They depict that the self-
adaptation of the strategy parameters works in the CMA04 also if the correction is
applied. As a consequence the achieved �tness value is better than in the CMA A
test runs, even though the optimisation converges at a local optima in the area of
the chest �n.

4.1.3 Results

To compare the di�erent approaches, the dolphin problem is used. Here large defor-
mations are required which makes it di�cult to keep the convex hull constraint. In
all cases a (3, 20)-CMA Evolution Strategy is applied.
The �tness progress of the di�erent approaches is depicted in �gure 4.8.
The comparison of both penalty function (4.1) (run PD1) and (4.2) (run PD2) shows
that the miss of the original �tness function leads to a much slower convergence.
The lack of information about the �tness landscape if equation (4.1) is used does
not enable to proceed towards the optimum in the invalid search space. After 4000
generations still no good approximation of the dolphin is found. The results of run
PD1 are shown in �gure A.1.
The number of �tness evaluations is reduced if the invalid designs are approximated
with a valid shape. In this case the invalid solutions contain information about the
�tness landscape. The search is able to move towards the optimum also in the invalid
search space.
However, the result of the test run PD2 does not ful�l the convex hull constraint.
As illustrated in �gure A.2(a) the shape contains a loop at the chest �n. To get a
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Figure 4.8: The �tness progress of the di�erent non adaptive test runs.

�tness generations evaluations

PD1 8.37427 4,000 80,000
PD2 0.49088 4,000 80,000
CD1 0.90988 1,089 21,800
CD2 0.96078 1,042 20,840
CD3 0.42121 2,267 45,340

Table 4.1: Results of the di�erent test runs. The columns contain the values of the
best solution found in the optimisation.

feasible shape, a higher penalty factor should be used. The results of run PD2 are
shown in �gure A.2.
These results expose that the quality of the shape has to be approximated. Oth-
erwise the use of penalty functions results in an impracticable number of �tness
evaluations.
The use of the correction approach can reduce the number of �tness evaluations
further. Since the search space is limited to the feasible areas if the correction is
applied, the optimisation converges faster as in the case of penalty functions.
The comparison of the two di�erent CMA implementations shows that as soon as a
�ne adjustment to the boundaries of the feasible search space is required the CMA04
approach performs better. Since the CMA A is not able to adjust the global strategy
parameter as good as the CMA04, the CMA04 achieves much better results even if
the local optima could not be overcome. The correction approach using the CMA A
even performs worser than the penalty which uses the correction algorithm to get an
approximation for the �tness evaluation. The wrong adjusted strategy parameters
prevent a convergence and better results. The results of the di�erent test runs are
summarised in table 4.1.
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Chapter 5

Adaptation of representation

The creation of an adequate representation is di�cult. The number of object param-
eters has to be chosen carefully. On the one hand the the number has to be small
to speed up the optimisation. On the other hand the design has to be kept �exible
enough to achieve the global optimum. A huge amount of experience and knowledge
about designing and the methods used for the representation is necessary to satisfy
this trade-o�. Designers have to know how the optimal shape roughly looks like and
which properties and parts of the shape are important. These assumptions are used
by the designers to select the optimisation parameters for the design. These heuris-
tics can prevent possibly new and unexpected solutions. If no previous knowledge
about the sensitive areas is available, a suitable representation cannot be build.
On the other hand if the amount of object variables is not restricted the optimisa-
tion becomes infeasible. Due to the large search space, the optimisation needs many
steps to converge.
An adaptive representation can overcome this trade-o� between completeness and
compactness even if no a priori knowledge is available. During the optimisation the
representation is adapted automatically to the problem by increasing or decreasing
the number of object parameters. The changed variability enables to �nd solutions
which cannot be represented with the initial coding. The problem speci�c knowledge
of the designers is less crucial for the optimisation.
The representation can also be adapted to the optimisation process. At the beginning
of the optimisation, when the whole design space is searched for promising areas, a
small set of object parameters, which allows only global modi�cation, is su�cient.
Later in the optimisation progress the number of object parameters is increased.
New variation opportunities are enabled which allows to approximate the optimum
more precisely. The search in the now higher dimensional space can be concentrated
on the previously found promising area. Adapting the representation in such a way
to the optimisation process realises a search in sub spaces and promises to reduce
the number of optimisation steps.
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The adaptation of the representation is, similar to the adaptation of the muta-
tion strategy parameters, an optimisation of second order. The �tness values of the
individuals are not improved directly, but the increased variability enables new ca-
pabilities for improvements of the �tness.
An important property for the adaptation of the mutation parameters is the strong
causality. This property allows to draw conclusions from the changes of the genotype
to the phenotype. Since the modi�cations of the coding are discrete, the changes have
a minimal size which makes it di�cult to realise the strong causality. To be able to
predict the e�ect of the modi�ed representation on the phenotype, the changes in
the representation should not alter the phenotype. This neutral mutation decreases
the probability of lethal modi�cations.
To adapt the representation, one has to increase the variability in promising regions.
These sensitive areas and have to be found. This can be realised by comparing di�er-
ent representations and selecting the most promising one to proceed. The selection
of the representation cannot be based directly on the �tness, because the neutral
mutation does not change it. The quality of the changed variability can only be
detected based on the optimisation progress. Individuals with a better adapted rep-
resentation improve their �tness faster than the others. To determine this faster
improvement of the �tness, a population is required. This population is evolved for
some generations. The �tness gain which is achieved during these generations, can
be used to compare several populations. The population with the highest improve-
ment is the most promising.

5.1 Adaptation of FFD

5.1.1 Explicit insertion

The Free-Form Deformation representation can be adapted in several ways. The de-
gree of freedom can be increased by inserting new control points while keeping the
shape of the embedded object. Also a reduction of control points without modifying
the design is possible. These modi�cation can be implemented in the same way:
Due to the decoupled arrangement of design and representation, any control volume
can be chosen. The number of control points and their positions can be changed
arbitrarily. After changing the control volume that way, the local coordinates of the
current object have to be computed again.
This approach of explicitly modifying the control volume has some drawbacks. The
computation of the local coordinate is costly especially for complex designs and CFD
grids which contain many points. Furthermore the in�uence of the control points on
the design is changed. In the case of an Evolution Strategy this fact destroys the
adaptation of the mutation strategy parameters. The information about the search
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space accumulated in the strategy parameters becomes useless since the �tness land-
scape is changed. Thus the explicit modi�cation can be considered as a restart of
the optimisation with a new representation and a better initial shape.

5.1.2 Implicit insertion

Another option is to insert control points implicitly. As already mentioned the de-
gree of freedom of the used basis polynomials can be increased without changing the
deformation. The advantage of this implicit insertion is that the embedded objects
have not to be frozen again.
In the case of Bezier curves the degree elevation algorithm can be applied. Due to
the global in�uence of the control points, all coordinates of the inner control points
are changed. All object parameters have to be updated. As in the explicit modi�ca-
tion case, the adaptation of the mutation strategy parameters is interrupted.
For B-splines the knot insertion algorithm can be used to increase the number of
control points. In contrast to Bezier curves only the positions of the adjacent control
points are changed. Their strategy parameter are wrong adapted after the re�ne-
ment. The strategy parameters of the unchanged control points can be kept.
Additional the local de�nition allows to re�ne the representation in certain areas.
The increased variability is not distributed over the whole control volume as in the
case of Bezier curves. That enables to create areas of di�erent density. That is impor-
tant to get a compact representation. In sensitive areas, where local modi�cations
are necessary to improve the �tness, a denser control lattice should be used than in
areas which only require global modi�cations.
Due to the de�nition as a trivariate tensor product, always a complete plane of con-
trol points is integrated. That circumstance and the displacement of the adjacent
control points limit the possibilities of pointedly re�nements (�gure 5.1).

5.2 Implementation

The adaptation of the Free-Form Deformation (AFFD) representation is imple-
mented by re�ning the control lattice with implicit insertion at promising positions.
These points are found by comparing di�erent control volumes and choosing the
best of them to proceed. Several populations are created. They all use a di�erent
control volume which emerge from a implicit insertion of control points into the cur-
rent lattice. The exact creation of one population is explained later. Each of these
sub-populations is evolved for a �xed number of generations. The best of them is
selected and evolved for further generations until the re�nement criteria is ful�lled
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(a) before insertion (b) after insertion in x-direction

Figure 5.1: The re�nement of a control volume always introduces a whole plane
of control points. To keep the �gure clearly, the connections in x-direction are not
displayed.

again or a stop criteria is reached. The activity diagram of the main cycle is depicted
in �gure 5.2.
To compare the di�erent representations, their quality have to be measured. As
already mentioned a proper quality is to determine the �tness gain accomplished
during some generations. Representations which achieve a larger �tness gain than
others are better adapted to the optimisation process and are more promising to
enable the representation of the optimum. Their control points have more in�uence
in an area of the shape where deformations are required to achieve an improvement.
A crucial point of the adaptation is the point in time when the re�nement takes
place. Increasing the variability too late wastes time, because no further �tness im-
provement is possible. On the other hand inserting new control points too early foils
the advantages of the rising variability and the approach becomes more and more
similar to one with �x representation.
In the implementation �rst the re�nement criteria was speci�ed by the number of
generations since the last re�nement and the variance of the best �tness values of
the last generations. When the minimal amount of generations is elapsed and the
variance of the �tness values is below a constant threshold, the evolution of the
population is stopped and a re�nement is applied. A small variance of the �tness
values indicates the convergence of the optimisation. Increasing the dimension of the
search space can enable to �nd a better solution.
The use of a constant threshold for de�ning the re�nement criteria is not su�cient.
In a coarse representation at the beginning of the optimisation changes of the geno-
type lead to larger modi�cations of the phenotype than in a �ner representation. As
a consequence the variance of the �tness values is higher in the �rst generations and
decreases during the optimisation process. A static threshold cannot be adjusted
to the whole optimisation process. As �gure A.9(c) shows between generation 25
and 501 a wrong adjusted threshold wastes time. Therefore in the later tests the
re�nement criteria is de�ned only by a minimal number of generations between two

1In generation 50 the representation was re�ned for the �rst time.
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(a) Evolution cycle of the adaptive ap-
proach. The evolve activity is the same
as in the non adaptive case 3.5.

(b) Activity diagram of the gen-
eration of one sub-population.

Figure 5.2: Activity diagram of the adaptive FFD optimisation.
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re�nements. This number is increased to respect the slower convergence caused by
the enlarged number of object variables.
The convenient time for insertion could also be detected on the basis of the global
step size. A low value indicates the convergence and hence the variability has to be
increased to enable further improvements. Waiting until the step size is small waste
time. First some optimisation steps pass without improving the �tness signi�cant.
After the re�nement further improvements are possible. But due to the small step
size, more steps are required to carry out this improvement even if the strategy
parameter adaptation enlarge the step size again.
To avoid that the control lattice is re�ned too early, one of the sub-population can
use an unchanged representation. This can improve the adaptation of the repre-
sentation to the optimisation progress. If the lower number of object parameters is
su�cient at the current state, this population can be selected. On the other hand
the unnecessary �tness evaluations of the re�ned populations could be omitted by
a later insertion operation.
However, more investigations are necessary to improve the de�ne a proper re�ne-
ment criteria.

5.2.1 Generation of populations

The di�erent populations are created by selecting a random individual and re�ning
its control volume. One of the three directions is randomly chosen. Then a random
point is inserted into the knot vector of this direction. If this point already exists or
is close to an existent knot point, a new point is selected. The aim of the minimal
distance is to prevent that control points are too close together. In such lattices
it is more di�cult to achieve large deformations, because keeping the convex hull
constraint requires more correlated deformations. The minimal distance decreases
after every re�nement to allow dense lattices in a later optimisation stage. In �gure
5.2(b) the di�erent activities are depicted.
The re�nement is done for the initial unchanged control volume and the modi�ed
control volume encoded in the individual. The re�nement of the initial control vol-
ume is necessary because the encoding of the control points coordinates is relative
to the initial control points.
After the control volume is re�ned, the genotype of the individual must be updated.
The four chromosomes are extended according to the number of new inner control
points. The old values of the unique control point numbers have to be changed with
respect to their new grid position. The speci�cation of the direction can be kept.
The object variables of the neighbouring control points have to be updated. For
B-splines of degree 3 these are the two adjacent planes of control points. The pa-
rameters required for the encoding of the new control points are then appended at
the end of each chromosomes.
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(a) before (b) after

Figure 5.3: The control volume before and after insertion in direction X. In the left
�gure the violation of the convex hull constraint of control point P22 is depicted.

The strategy parameters are also updated. In the case of a CMA strategy the evolu-
tion path and the covariance matrix are enlarged. The parameters of the unchanged
control points are kept, whereas the parameters of the changed control points are ap-
proximated by their old values. The strategy parameters for the new object variables
are initialised with default values. For the covariance matrix this are unit vectors.
When only a global strategy parameter is used, its old value is kept. For an indi-
vidual step size adaptation the values of the old object variables are kept whereas
the step size for the new ones are initialised with a default value determined by the
user.

5.3 Constraint violation caused by insertion

In context with the convex hull constraint one problem occurs when the implicit
insertion is applied. The convex hull constraint has to be kept during the whole
optimisation process to ensure that the computational grid is valid. Re�ning the
control lattice by an implicit insertion can violate this constraint. Control points
which are added or changed due to the insertion can be located outside the convex
hull of their cell. One example is shown in �gure 5.3. Before the re�nement the
constraint is ful�lled. After the middle column of control points is introduced, the
control point P22 violates the constraint.
Even though the implicit insertion does not change the deformation and the struc-
tural composition of the computational grid is still valid, it has to be prevented that
the constraint becomes violated. Otherwise one cannot assure the grid validity in
the next optimisation steps. In the next steps the convex hull constraint has to be
ful�lled again. To overcome this problem, three di�erent approaches are discussed:
a late as possible, a penalty and a correction approach.
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The problem of the constraint violation especially occurs in the death penalty ap-
proach, which was �rstly used. Although the re�ned individual has a valid computa-
tional grid it cannot be used as parent for the next generation. In the death penalty
approach new solutions are produced until a valid one is found. When the parent
violates the constraint, the creation of a valid o�spring is very unlike. Therefore
the re�nements have to ful�l the convex hull constraint. One has to �nd point and
direction pairs, which do not lead to a violation. But �nding such pairs is di�cult.
Especially in areas with large deformations it is likely that the insertion violates
the constraint, whereas in areas where the deformations are small it is easier to �nd
them. But in particular the areas with large deformations promise to have more
bene�t from a re�nement.

5.3.1 Late as possible

The late as possible approach was used for the death penalty method to overcome the
problem of a violated constraint after the re�nement of the representation. Before
the optimisation begins, di�erent point and direction pairs for the next re�nement
are selected. When the re�nement criteria is ful�lled, these pairs are used to create
the sub-populations. Additionally in every generation it is checked if the re�nement
of the o�spring population at the selected points would violate the constraint. When
the constraint is ful�lled, the optimisation proceeds. Otherwise the parents of the
o�spring population are re�ned immediately even if the re�nement criteria is not
complied.
This as late as possible approach has some drawbacks. The large deformation re-
quired for the dolphin test problem violates the convex hull constraint very often.
In the test runs only a few generations pass between two re�nements. This circum-
stance complicates the comparison of the di�erent control volumes. The number of
generations to evolve the di�erent populations is too small to get reliable results for
the �tness gain.
Additionally the new insertion points and directions still cannot be chosen freely.
The insertion of the new selected points into the control lattices of the current
population has to ful�l the constraint.

5.3.2 Penalty function

One option is the use of a penalty function already presented in section 4.1.1. In
this case the hard constraint is replaced by a soft constraint. This allows to chose
arbitrary points and directions for the re�nement.
On the other hand the penalty approach does not ful�l the neutral mutation prop-
erty. Due to the violation, the �tness value of the re�ned individual is higher than
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the unre�ned although the individuals represent the identical shapes.
The penalty further interfere the comparison of di�erent control lattices. It is dif-
�cult to conclude from the �tness gain on the quality of the new representation.
Dependent on the penalty factor re�nements with a large violation have a much
higher �tness. The reduction of this violation enables to achieve a high �tness gain
without improving the original �tness. Due to the high �tness gain, these popula-
tions are preferred in the selection. Thus the quality of the variability cannot be
measured because the comparison between the di�erent representations is mainly
based on the size of the violation introduced by the re�nement.
An other option is to use the absolute �tness to select one of the sub-populations.
That is similar to a selection which is based on the �tness gain without the penalty
caused by the insertion. In this case re�nements which result in a large violation
are not preferred. On the contrary they are disadvantaged, because they have to
overcome the violation. The results of a test run (APD1) are given in �gure A.8. In
this test a single sub-population was created till generation 180. Afterwards their
number was set to 15. The �tness progress depicts that until this generation re�ne-
ments, which lead to a violation, occurs. After generation 180 only populations with
a small violation were chosen whereas the others are dropped.
However, a re�nement in an area with large modi�cations seems more promising. An
example from the test run is given in �gure 5.4. The re�nement shown on the right
would enable new variability but was neglected due to the high penalisation. Instead
the re�nement on the left was selected. There no penalty occurs. As a consequence
in the areas of the head and the caudal �n no further improvements are possible.
The optimisation converges at a �tness of 0.904.
One possibility to reduce the in�uence of the violation is to evolve the populations
for more generations. This would increase the opportunity that re�nements which
lead to a violation but enable new and necessary variability are selected instead of
unneeded ones.
On the other hand the amount of �tness evaluations increases simultaneously.

5.3.3 Correction algorithm

Another option is to correct the control point lattice to ful�l the constraint. After
re�ning the lattice the invalid control points are displaced into the convex hull of
their cell. This correction is done by the same method previously explained in sec-
tion 4.1.2.
As in the penalty approach the positions and the time of the re�nement can be
selected freely. Besides the comparison of the di�erent representations is not in�u-
enced as much as in the penalty approach, because the �tness gain depends mainly
on the re�ned position especially if the �tness gain is used. Even if the correction
modi�es the deformation and accordingly the shape the changes of the �tness values
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(a) The selected control lattice. (b) A control lattice which seems to provide
a more useful variability. To achieve a better
matching at the head and at the tailing �n of
the dolphin, control points in this area are re-
quired.

Figure 5.4: Two control lattices used by di�erent populations during a test run of the
adaptive penalty method. The new control point row or column are marked with an
arrow. The population using the left lattice was selected even if it does not provide
any new useful variability. The re�nement one the right leads to a violation of the
convex hull constraint. The solutions of that population have a higher �tness value
although the re�nement provides new variability.

are smaller than in the penalty approach.
Since the correction algorithm modi�es the phenotype, the �tness has to be com-
puted again. However, the di�erent test runs have shown that in most cases the
population with the highest gain also has achieved the best absolute �tness value.
Using the absolute �tness instead the �tness gain can omit the additional evalua-
tions.
The correction does not satisfy the neutral mutation property completely. The dis-
placement of the invalid points changes the deformation and accordingly the shape.
Especially in areas with large deformations and dense lattices the re�nement can
lead to violations of the convex hull constraint. The correction algorithm modi�es
the deformation in that area and thus also the shape. These annulled deformations
have to be recovered again. Figure 5.5 depicts an example. After inserting a new
point in x direction the chest �n is matched clearly less. To achieve the old defor-
mation, several optimisation steps are necessary. Such re�nements slow down the
optimisation. On the other hand the insertion at such points are necessary to pro-
vide a su�cient variability as run APD1 exposes.
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(a) Full shape (b) Zoomed at changed part

Figure 5.5: The control lattice and the shape before and after a re�nement in x
direction are shown. The solid blue lines displays the edges of the control lattice
which are replaced by the re�nement. The new edges are depicted as bold dotted
lines. Due to the correction of the convex hull constraint, the dolphin matches the
target worse after the re�nement.

5.4 Results of adaptation

Several test runs with di�erent number of sub-populations, depicted in table 5.1,
have been used to solve the dolphin or blade problem. All tests using a (3, 20)-
CMA-ES. Except for run APD1 which uses the penalty approach, in all runs the
correction approach is applied. The initial control lattices are shown in �gure 5.6.
The sub-populations are evolved for 15 generations before the best one is selected
according to their �tness gain.
In test run AD1 the re�nement criteria was determined by the �tness variance and
a minimal number of generations between two re�nements of 15. This number was
raised in generation 400 to 20 and in generation 800 to 25. Till generation 300 the
minimal amount of generation elapsed before the variance of the �tness values has
reached the threshold. Afterwards the point in time for the re�nement was only
determined by the minimal number of generations because the �tness variance was
always beyond the threshold. From generation 1, 000 no re�nement was applied any
longer.
In all other runs the re�nement criteria was speci�ed only by the minimal number of
generations which starts at 15 and is incremented by two after each insertion cycle.

A comparison of the adaptive penalty and correction approach is given in �gure
5.7. In the �rst generations both approaches seem very similar. But from generation
600 the correction approach achieves much better results. After that generation the
penalty approach could not increase the required variability.
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(a) dolphin (b) turbine blade hub section

Figure 5.6: Initial control volume for adaptive FFD tests.

Figure 5.7: Fitness progress of the adaptive penalty and correction approach. The
�tness values of the rejected sub-populations are included. In the �rst generations
both approaches performs similar. But after generation 600 the penalty approach
could not increase the required variability, because the re�nement leads to a large
violation of the convex hull constraint. As the peaks indicates the violation of some
re�nements increases right before that generation.
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5.4.1 Adaptation to optimisation process

One goal of the adaptive approach is to adapt the representation to the optimisation
process in order to speed up the convergence. As the strategy parameters indicate
the ES (in both approaches adaptive and non adaptive) starts with a global search.
In the �rst generations a large step size is used and then reduced by the strategy
parameter adaptation.
Starting with a coarse lattice, which allows only global changes, and re�ning the rep-
resentation more and more supports the search strategy of the optimisation process.
The combination of both enables a search in subspaces. In the �rst steps a rough
approximation of the optimum is found. This rough estimate is re�ned more and
more during the optimisation process until a good approximation of the optimum is
found.
Regarding some interim steps of the dolphin test problem one can see that this search
in subspaces is realised. The initial circle is �rstly deformed to an eclipse. Then it
is bended to approximate the body of the dolphin. Afterwards the �ns and the lip
are developed more and more until the dolphin is almost matched. The progress of
one deformation is depicted in �gure A.14. In the non adaptive runs every part of
the circle is moved for itself to match the dolphin A.15. This search in subspaces
allows to �nd a solution near the global optimum for the dolphin test problem. As
the shapes in section A.3 depict the adaptive test runs do not stick in the local
optima with two chest �ns as the most non adaptive test runs do. Therefore the
�tness values of the adaptive approach are smaller.
To determine if this search in sub spaces speeds up the optimisation, the �tness
progresses of the di�erent test runs are compared in �gure 5.8(a). One can see that
the adaptive approach requires much more �tness evaluations even if the number
of generations is reduced (5.8(b)).The picture also shows that the number of �t-
ness evaluations increases with the number of used sub-populations. Only the test
run AD4, where a single sub-population is created, achieves a faster convergence.
However, this run is not faster than the non adaptive CD3 over the whole optimi-
sation process. Due to the initial global representation, the �tness of the adaptive
tests decrease faster especially in the �rst steps of the optimisation. But then the
non adaptive run makes up leeway and performs better between generation 150 and
1500. Afterwards the adaptive test run AD4 performs better again. A better �tness
is achieved while less �tness functions were evaluated.
During the generations 150 and 500 the �tness gain of run AD4 is very small in
comparison to the other test runs. It seems probable that the re�nements between
these generations do not lead to the required variability. Using a heuristic to deter-
mine the insertion point instead the random selection can decrease the probability
of such re�nements.
In test run AD5 a simple heuristic was used. The direction of the re�nement is deter-
mined by the number of lattice points. Always the direction with the lower number
of control points is selected. If their number is equal, the x direction is used. The
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(a) The �tness according the �tness evaluations. (b) The �tness according the generations.

Figure 5.8: The �tness progress of the adaptive test runs.

Figure 5.9: The �tness progress of the adaptive tests with a single sub-population.

new knot points halve the largest interval of the corresponding knot vector2. The
enlargement of the search space is stopped when a 19×18 control lattice is reached.

Figure 5.9 illustrates that the heuristic reduces the number of �tness evaluations
while simultaneous a better solution is created than in the run CD3 and AD4.
Regarding the �tness progress of the turbine blade test problems (5.10) one can
see that the adaptive test does not reduce the number of generations. The adaptive
approach is not even faster in the �rst generations. Even a single population will
not speed up the optimisation. This can be explained with the better start point.
The given design does not need as much global changes as the circle in the dolphin
case. In such a case the initial grid should already be �ner. Otherwise several re�ne-
ments have to be applied before the variability is su�cient to enable the required
deformations.

2If several intervals are equal, the �rst of them is halved.
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(a) The �tness according the generations. (b) The �tness according the �tness evaluations.

Figure 5.10: The �tness progress of the adaptive turbine blade tests.

5.4.2 Adaptation of control lattice

Another aim of an adaptive representation is to create a compact representation
while still providing a su�cient variability for the current search stage. To evaluate
the adaptation of the representation to the problem, one has to regard the number
of object parameter and the achieved �tness value. The runs of the adaptive ap-
proach all achieve a slightly better �tness value. This improvements stem from the
overcoming of the local optima in the area of the chest �n. The variability of the non
adaptive control lattice is high enough. One the other hand they use a much higher
number of object variables than the non adaptive solutions. The solution of run AD2
for example uses a control lattice of 21× 16 points. That corresponds to 532 object
variables, whereas the non adaptive solutions only uses 288. This numbers do not
testify a compact representation. However, it has strongly to be mentioned that the
control lattice used for the non adaptive tests is already adjusted by hand.
The problem in the automatic adaptation is that control points lose their in�uence
on the embedded shape. Re�ning the control lattice always introduces a complete
plane of control points. Even if the re�nement is only needed in a smaller part. The
control points of the adjacent planes are relocated. Additionally the area of in�uence
becomes smaller because of the piecewise de�nition of the B-splines. Control points
can lose their in�uence on the shape. Especially the control points positioned at the
boundary of the shape are moved more and more to the outside and lose the e�ect
on the design. In run AD1 for example the �rst �ve and the last three rows of the
control lattice and the control points inside the circle have no more in�uence on the
embedded shape.
Besides, the re�nements of the representation depend only on the number of genera-
tions. Re�nements are applied even if the variability is su�cient for the optimisation.
To achieve a more compact representation, the re�nements should not be applied if
no further improvement is possible. More research is necessary to develop conditions
for the de�nition of a su�cient re�nement criteria. As already explained in section
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#pop3 �tness generations evaluations control
lattice

control points
with in�uence
number ratio

CD2 - 0.9608 1,042 20,840 14× 14 128 88,88
CD3 - 0.4212 2,267 45,340 14× 14 128 88,88
AD1 16 0.3058 1,894 177,900 23× 18 205 61.01
AD2 10 0.1376 1,379 108,590 21× 16 144 54.14
AD3 5 0.3097 1,492 67,215 22× 18 134 41.88
AD4 1 0.3882 1,709 34,233 17× 25 139 41.44
AD5 1 0.3133 1,356 27,148 19× 18 120 44.12

Table 5.1: Results of the adaptive test runs. For comparison the two non adaptive
test run CD2 and CD3 are shown again. The columns contain the values of the best
solution found in the optimisation.

#pop3 �tness generations evaluations control
lattice

control points
with in�uence
number ratio

CB1 - 0.1636 2,267 45,340 19× 17 137 53.73
AB1 15 0.1840 960 86,139 14× 15 110 70.51

Table 5.2: Results of the turbine blade test problem. The columns contain the values
of the best solution found in the optimisation.

5.2 the �tness value and the strategy parameter can be used as a point of origin.
For the turbine blade problem the results look di�erent. The resulting control lattice
of the adaptive test run (AB1) consists of less control points than the one adjusted
by hand. The number of object variables is reduced from 510 to 312 while the
achieved �tness is slightly worse. The non adaptive test run achieves a �tness value
of 0.164 the adaptive 0.184. This more compact representation is achieved because
the minimal number of generations between two re�nements was increased to 100
at generation 700. That avoids many unnecessary re�nements.
This adaptation is expensive. AB1 uses 15 sub-populations and thus the number of
�tness evaluations increases from 32, 000 to 86, 139. The results are summarised in
table 5.2.
One option to reduce the number of object variables appreciably is to encode only
the control points which have in�uence on the shape, into the genotype. In the adap-
tive test runs their number depends on the is used sub-populations and is about 50%.
In run AD2 for example the number of object parameters would be reduced from
532 to 144. Table 5.1 contains the exact values of all test runs. In comparison to the
control lattice adapted by hand the adaptive approach obtain a similar number.
This information could also be used to improve the correction algorithm. Control

3number of sub-populations
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(a) non adaptive run CD3 (b) adaptive run AD1

Figure 5.11: Deformation of a equidistant point grid.

points which do not e�ect the design can be relocated preferred, whereas points with
in�uence remain unchanged more likely.
A further option to obtain a more compact representation could be the use of an-
other spline basis function. A basis function which enables more local re�nements
by adding a single control point and does not change the in�uence of the old control
points, is preferable. Possible candidates for such spline basis could be hierarchical
splines or T-splines. They enable very local re�nements.
The global representation at the beginning and the relocation of the control points
also have an advantage. Since the more global deformation before the re�nement
is kept by the insertion and also maintained in the following optimisation steps,
the deformation is smoother than in a non adaptive approach. In �gure 5.11 this
is illustrated by deforming an equidistant grid of points. The lattices used for the
deformations stem from run AD1 and CD3 of the dolphin problem. In the manual
adjusted control volume the placement of the control points leads to an unbalanced
deformation. Such a smoother deformation will lead to CFD meshes with a better
quality. A CFD mesh for test run CD3 would have cells of very di�erent volume
whereas the cells in run AD1 have a more similar size.

5.4.3 Problem speci�c knowledge

The adaptive representation should reduce the required problem speci�c knowledge
to build an adequate representation. That is important if no a priori knowledge
about possible solutions is available and the designers cannot build a proper repre-
sentation.
The results of run AD1 (A.9(b)) show that the control volume is adapted to the
problem. As expected, the control volume is �nest in the region of the �ns. There
the most local modi�cations are necessary to match the target. In the other regions,
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Figure 5.12: The control volume of the adaptive test run AB1 in generation 216. In
the area of the trailing edge the grid is denser.

where the shape has less curves, the control lattice is coarser. The adaptation is
more obviously in the blade test problem. The target turbine blade contains the
largest curvatures at the trailing edge. In that area local deformations are required.
The adaptive approach has adapted the representation. The control lattice is most
�nes in that area (A.7(c)). Regarding the control lattice of an earlier state (5.12)
the di�erent densities of the control lattice are obvious.
The control lattice produced by the AFFD method is very similar to the manual
adapted (3.8(a)). This indicates that the adaptive approach can automatically de-
tect the sensitive areas of the design. The in�uence of the previous knowledge of
the designer is reduced. Even if no knowledge of possible solutions is available, an
adequate representation is build. That enables to �nd unexpected solutions not rep-
resentable with the initial coding created by designers.
The adaptation depends on the number of populations. Using only 10 or less does
not lead to a control volume which looks adapted. Especially in run AD4 many
control points seem unnecessary. However, the adapted control volume in test run
AD1 does not lead to a better �tness value than in the other adaptive test runs.
On the contrary the �tness is worse than in run AD2. The very dense control lat-
tice in the area of the chest �n creates some problems. As already mentioned the
re�nement in that dense region leads to a violation of the convex hull constraint.
The correction annuls the deformations achieved so far. To obtain the old deforma-
tion again, neighbouring control points have to move correlated. The more control
points are involved the more correlated movements are required. This slows down
the optimisation. In a coarser grid fewer correlated mutations are necessary. That
enables to achieved large deformations faster as the chest �ns in the �gures A.10(b)
and A.12(b) show.
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5.4.4 Conclusion adaptive approach

The results demonstrate that the AFFD approach can reduce the in�uence of the
initial representation. That enables to �nd also unexpected solutions. The AFFD
approach depends less on the a priori knowledge of the designers. However, to ob-
tain a proper representation, several sub-populations and a huge amount of �tness
evaluations are needed.
For costly �tness evaluations the adaptive approach with several sub-populations
will not be feasible due to the high number of evaluations. On the other hand if no
previous knowledge about possible solutions is available the adaptive approach can
be used to detect sensitive areas.
A reduction of the �tness evaluations can be obtained if global deformations can
improve the �tness and if a single sub-population is used. For good start points
global deformations are not necessary to improve the �tness. In such a case the
initial lattice should be already �ner.
Achieving both goal, a reduction of the �tness evaluations and the creation of an
proper representation, seems di�cult to realise.
One possibility to achieve an adapted control lattice with fewer �tness evaluations
is to use a increasing number of sub-populations. In a coarse lattice the bene�t of
a re�nement point depends mainly on the direction of re�nement. The positions of
the new points are less important, because the area of in�uence is still large. When
the number of sub-population depends on the current number of control points, es-
pecially in the �rst generations the number of �tness evaluations can be reduced.
The adaptation of the lattice should still be possible since for the later re�nements
a su�cient variety of representations is available.
An other option is to use more sophisticated heuristics. They can be based on the
information of the control point displacement. Areas where the positions of the con-
trol points are changed more seem to be sensitive for the design, especially the areas
with a large relative movement of adjacent control points. In such areas large de-
formations are applied. Regions with only a small deformation seem to be optimal
or insensitive for the optimisation. However, more investigations are necessary to
develop good heuristics. On the other hand the use of heuristics can prevent to �nd
new and unexpected solutions which is one goal of the automatic adaptation.
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Chapter 6

Direct Manipulation

As already mentioned it is important to have a small number of object parameters
to represent a shape while on the other hand a high �exibility has to be provided. To
achieve a good trade o� between compactness and completeness for the Free-Form
Deformation, the initial control lattice has to be created properly. The in�uence of
the control points on the embedded shape has to be maximised. A high impact is
especially important in the constraint optimisation. If the movements of the con-
trol points are restricted, the in�uence of the control points on the shape has to
be high to achieve anyway large deformations in a few steps. Since the in�uence of
the control points decrease with their distance to the design, the maximisation is
usually done by placing the control points near the sensitive regions of the design.
The creation of such a problem speci�c control volume requires some knowledge
about the behaviour of FFD and splines. Moreover it is not possible to achieve a
high in�uence of all control points. Due to the piecewise de�nition of B-splines, in
�ne control lattices the in�uence of a control point decrease fast with the distance.
Some points even have not e�ect the shape.
The direct manipulation technique can reduce the problem of maximising the in�u-
ence. The speci�ed deformations are always achieved independent of the in�uence
of the control points. The object points are moved to the target positions even if
the control points are far away. The accurate placement of the control points is
less important. To achieve the target deformation exact, one has to assure that the
number of object points is not higher than the number of control points.
Of course, the possible deformations still depend on the control lattice and all de-
formation which can be achieved by the direct manipulation can also be achieved
by the general FFD approach. In both cases the deformation is ultimately de�ned
by the control lattice. But the desired deformation should be achieved faster, be-
cause the in�uence of the object variables on the phenotype is larger. As already
mentioned in the general FFD approach the in�uence of the various control points
is di�erent.
In the direct manipulation the impact of the object variables, which are the target
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Figure 6.1: The displacements of the two object points are of equal size. Whereas the
displacements of the control points are quite di�erent. To achieve the displacement
of object point OP1, two control points have to be shifted far because their in�uence
on the embedded circle is smaller. This indicates the larger and straighter in�uence
of the object points on the shape.

deformations, is straighter. A change in an object variable leads to an equivalent
alteration of the design. Large modi�cations of the object variables lead to large
changes of the design whereas small ones modify the shape only slightly. Thus the
strong causality property is better implemented as in the general FFD approach.
There small changes of control points with a large in�uence change the phenotype
more than large modi�cations of control points with little impact. Figure 6.1 gives
an example. The changes of both object points are of the same magnitude. The
changes of the control points are di�erent.
The enhanced in�uence allows to reduce the number of object parameters while still
a similar variability is provided. Of course, if the number of object points is smaller
than the number of control points the direct manipulation will not be able to provide
the same variability as the general FFD approach. As already explained in such a
case several solutions exist to achieve the target deformation but only one of them
can be speci�ed. However, the di�erences of these deformations on the design should
be quite small. Since the target points are matched of all these di�erent solutions,
the di�erences in the parts close to the object points have to be small.
The reduction of object variables should especially prune the variability which has
no or only a small e�ect on the embedded shape. If a control point has no e�ect
on the embedded shape, but is necessary for a correct de�ned control volume, its
unneeded variability is reduced.
On the other hand this small di�erences sometimes lead to a signi�cant better qual-
ity. Similar to the general FFD approach the object parameters have to be selected
carefully to create a proper representation. However, the selection of adequate object
points is more intuitive than the selection of control points. A precise knowledge of
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(a) The genotype (b) The object points and tar-
get deformation

Figure 6.2: The encoding of object points and target deformations.

splines is no required.
These both advantages of the direct manipulation, the compacter representation and
the increased in�uence on the design, should speed up the optimisation.
Despite these advantages the direct manipulation is still limited. Due to �xed rep-
resentation, the initial control volume and object points determines which defor-
mations are possible and which shapes cannot be represented. The control volume
and the object points have to be adjusted to the problem and sensitive areas have
to be found. The number of control points should not be as important as in the
general FFD approach because they do not de�ne the object variables. A higher
number should not slow down the optimisation. To overcome this problem of build-
ing a proper representation, an adaptive DMFFD representation can be used. First
investigations in that topic are made in section 6.4.

6.1 Implementation

6.1.1 Coding

In contrast to the FFD and AFFD approach where the control points are used as ob-
ject variables, in the DMFFD method the displacements of the object points adopt
this role. The displacement is divided into the three directions and measured in the
(x, y, z)-coordinate system relative to the initial position of the corresponding object
point. This object point is speci�ed by its index in the initial point set. For each
object parameter a point number and the direction of the target deformation are
encoded. Figure 6.2 gives an example.
Furthermore each individual contains a control volume which ful�ls the point defor-
mations speci�ed in the genotype. This control volume consists of an initial and a
deformed control lattice as well as a knot vectors for each directions.
The strategy parameters are not encoded into the genotype because the CMA04
implementation is used.
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(a) direct manipulation with pseudoinverse (b) direct manipulation with pseudoinverse and
correction algorithm

Figure 6.3: To match the displayed target points, the control volume is calculated
with the pseudoinverse. The resulting control lattice does not ful�l the convex hull
constraint at control point P33. To ful�l the constraint, control points, which have a
small or even no impact on these object point, have also to be moved. On the right
side the correction algorithm is applied. As one can see the realised deformation is
much smaller.

6.1.2 Computing control points

Unfortunately the e�cient and exact approach of Hsu explained in section 1.4 cannot
be used to compute the control point coordinates. To keep the structural compo-
sition of the computational grid, the convex hull constraint was introduced. This
constraint has to be ful�lled to ensure that the �tness can be evaluated with the
deformed grid.
The use of the pseudoinverse leads to invalid control lattices. Since the pseudoin-
verse calculates the solution with minimal displacement, only the control points
which have in�uence on the object points are moved. The others keep their posi-
tions. This can result in a violation of the convex hull constraint if large deformations
are needed to match the target points. Figure 6.3 shows an exemplary deformation
calculated with the pseudoinverse. The resulting control lattice does not satisfy the
constraint.
The implemented correction algorithm cannot be used to correct the computed lat-
tice. This algorithm undo most of the deformations because the invalid control points
are moved back. The size of the possible deformations depends on the distance of the
control points. In a coarse lattice the control points can be displaced farther than
in a tighter one. As a consequence local deformations will be small. Larger displace-
ments can only be achieved with a coarse lattice and thus have to be more global.
If such restricted deformations are su�cient for the optimisation, the pseudoinverse
together with the correction algorithm could be applied. However, normally it is
unknown with deformations are necessary.
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Therefore the control point coordinates are not calculated with the pseudoinverse.
They are determined by solving a target matching optimisation problem. The aim
of this optimisation is to get a control lattice which matches the object points as
good as possible while keeping the convex hull constraint. For solving this problem
the FFD algorithm described in chapter 4 is used.
To initialise the optimisation, several dates have to be provided. The object points
encoded in the genotype of the individual determine the initial points for the control
point calculation. The target point set is de�ned by the initial object points shifted
by the target deformation.
The control volume used in the control point calculation is initialised with the con-
trol volume encoded in the individual. That reduces the computational e�ort. The
calculation of the control points starts with the deformed control lattice of the last
generation. The deformation speci�ed by this control lattice matches the target
points of the last generation. Since the di�erences of the target points between two
generations are not large, the necessary control point displacements should be small
and easy to calculate.
The strategy parameters of the FFD method are initialised with the global para-
meter of the object point optimisation. This step size indicates how far the object
points are displaced in comparison to their last positions. The displacement of the
control points should be in a similar order of magnitude.
The �tness function of the FFD method is de�ned as the average distance between
the deformed object points and the corresponding target positions:

f(x) =
1

n

n∑
i

‖OPi − Ti‖2

where n is the number of object points, OPi are the coordinates of the object points
and Ti of the target points.
The solvability of the constrained problem is not as clear as in the unconstrained
case. Since it is possible that the problem has no feasible solution and to limit the
computational e�ort, the optimisation is stopped if a certain �tness value or a max-
imal number of generations is reached. After the control volume is calculated, it is
encoded into the genotype of the individual.
The FFD program used to calculate the control points does not use a master/slave
architecture. Due to the limited computational capacity1 the advantage of the par-
allelisation is negligible. Instead of the parallel o�spring generation in the FFD
approach the o�springs are all created by the master one by one.

6.1.3 Evolution cycle

The Evolution Strategy using the direct manipulation technique (DMFFD-ES) is
implemented similar to the one explained in chapter 3. The DMFFD program again

1The number was limited to two double core cluster nodes.
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(a) The evolution cycle of the DMFFD ap-
proach. The part inside the box is realised
by the slave.

(b) Activities of the control point opti-
misation to match the target positions
of the object points. The box marks
parts computed by the modi�ed FFD
program.

Figure 6.4: Activity diagram of the direct manipulation approach.

uses a master/slave architecture. The evolution cycle is depicted in �gure 6.4(a).
First the initial design, the target design and the initial control lattice de�ned in
the parameter �le are loaded. Then the initial design is frozen. After the population
for the �rst generation is created, the evolution cycle starts.
The master sends a random parent and the mutation strategy parameter to every
free host and then switches into the receiving mode.
After the slave has received the parent, a new individual is generated by mutating
an exact copy of the parent and evaluating its �tness. Therefore the phenotype has
to be encoded from the genotype which consists of the following steps:

1. decoding the object and target points

2. calculate the control point positions which ful�l the deformation speci�ed by
the object and target points

3. deforming the embedded shape according to the calculated control points
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Figure 6.5: A high error in the control point calculation decreases the step size. The
smaller target deformation in the next step enables to achieve better results in the
control point calculation.

The object points and target deformations are used to initialise the calculation of
the control points. Then the control points, which satisfy the object point deforma-
tion, are computed by the modi�ed FFD approach. The resulting control volume is
used to deform the whole design according to equation (1.1). When the deformed
design is available the �tness is evaluated with the same function (3.1) as in the
FFD approach.
Since it is not ensured that the calculated control points move the object points
exactly to the target positions, the realised positions of the object points are coded
back into the object variables. The distances between the initial object points and
the object points deformed by the calculated control points, are computed in the
Cartesian coordinate system and written into the chromosomes. Due to the encod-
ing of the realised object point displacements, the self adaptation takes the realised
variance into account. If the target points could not be matched, the realised vari-
ance is smaller as the expected. The global step size is reduced accordingly. As a
consequence of the smaller step size the computation of the control lattice will be
easier for the individuals of the next generation. Thus the error of the control lattice
optimisation is limited by the self adaptation of the DMFFD-ES. Figure 6.5 illus-
trates this limitation.

6.2 Problems with the control point calculation

In the �rst test runs the optimisation of the control lattice was stopped as soon
as a maximal number of generations was reached or the �tness value was below a
threshold of 0.01. This results in a truncation of the DMFFD optimisation. If the
changes in the object points become too small, it happens that already the initial
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(a) The target deformations could not be
achieved due to the limited number of gen-
erations.

(b) The �tness progress of the control point
calculation. Using more generations would
enable to �nd a better solution.

Figure 6.6: Example for the realised target deformation.

solution was better than the threshold. In such a case the o�spring is equal to its
parent because the control lattice is unchanged. The realised variance decreases and
the strategy parameter adaptation reduces the step size. As a consequence in the
next steps the probability that this problem appears again increases. In the end the
step size becomes zero. Therefore in the later tests the threshold was set to zero,
which signi�es an exact solution.
For practical reasons the number of generations used for the computation of the
control points is limited to 50. Such a maximal number is necessary to assure the
termination. It cannot be guaranteed that a solution of the constrained optimisation
exists or will be found by the ES.
The value of this number has to be chosen carefully. On the one hand a small number
makes it impossible to realise large displacements and to match the target positions
exactly. This reduces the realised variance of the population and therewith the step
size of the DMFFD-ES. The reduced step size slows down the optimisation because
more optimisation steps are required to obtain a large object point displacement.
Figure 6.6 shows an example. The target points could not be matched because the
number of generations is not su�cient to realise the deformation.
On the other hand a large number of generations increases the time for the con-
trol point calculation. As a consequence the time for one optimisation step of the
DMFFD-ES is enlarged.
The choice of the maximal generation number depends on the cost of the �tness
evaluation. The more time is required the more time should be spent for the control
point calculation to reduce the number of �tness evaluations. This reduction can
annul this time consumption required for the control point calculation.
Another problem occurs when the convex hull is just ful�lled and the di�erence be-
tween the previous and actual target points are very small. Then in the �rst steps
of the control point calculation the �tness becomes worse (�gure 6.7(a)).
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The reason could be that the initial strategy parameter is too high. In the previous
control point calculation the control point positions were adjusted to the boundaries
of the valid search space. This adjustment is realised with very small steps as the
dotted lines show. The large changes in the �rst generations of the new calculation
lead to a large violation of the convex hull constraint as �gure 6.7(c) illustrates.
After the correction of this violation the �tness becomes much worse.
In the optimisation depicted with the solid line it was not possible to make up this
leeway. If the initial solution could not be improved within the limited number of
generations, the initial control points are returned to the DMFFD-ES. As a conse-
quence the o�spring is equal to its parent. Due to the reduced variance, the step
size of the DMFFD-ES decreases. In run DMD2 and ADMD1 this problem occurred
several times. The optimisation was truncated due to a step size of almost zero (�g-
ure A.17(c) and A.18(c)).

6.3 Results of direct manipulation

Two test runs for the dolphin problem have been accomplished. Both runs use a
(3,16)-CMA ES, whereas the calculation of the control points uses a (1,16)-ES with
only a global mutation strategy parameter (GSA). Run DMD1 uses 20 and DMD2
40 object points equidistant distributed over the circle. All object points can be
moved in x and y direction. That means a reduction of the object parameters from
288 to 40 respectively 80 in comparison to the general FFD approach.
The comparison of the results of the DMFFD approach with the non adaptive FFD
shows that the direct manipulation requires less �tness evaluations (�gure 6.8). Run
DMD2 requires 435 generations whereas run CD3 needs 843 to achieve the same
�tness. This corresponds to a reduction of �tness evaluations from 16, 860 to 6, 960.
The enhanced in�uence and the compacter representation lead to a reduction of
about 58.7%.
On the other hand the �tness value achieved by the FFD approach was not realised
by the direct manipulation. This can be explained with the lower degree of freedom
used in the DMFFD runs. Comparing the results of DMD1 and DMD2 one can see
that the increased number of object points leads to a clear better solution. Whereas
run DMD1 achieves a �tness of 1.9593 test run DMD2 results in 1.0690. Furthermore
the truncation of the optimisation explained in the previous section prevents better
results.
Run DMD1 points out a further aspect of the direct manipulation approach. Figure
A.16(a) depicts that not only the areas near an object point are optimised to match
the target shape but also regions between object points which are far apart. In
these areas the target is not matched as good as in the areas next to an object
point but the shape is also adjusted to the target. Regarding the tail �n one can
see that the centre is matched although there is no object point. This aspect is
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(a) The �tness progress (b) The progress of the global strategy parame-
ter

(c) The length of the control point displace-
ments caused by the correction algorithm

Figure 6.7: Two successive control point calculations are shown. The solid line de-
picts a run where the initial �tness could not be improved. In the �rst generations
the �tness increases. In these generations the step size is clearly higher and larger
corrections are required. The dotted lines show the data of the calculation right
before.
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Figure 6.8: The �tness progress of the DMDFFD tests

�tness object vari-
ables

generations evaluations

CD3 0.4212 288 2,267 45,340
DMD1 1.9593 40 363 5,808
DMD2 1.0690 80 435 6,960

Table 6.1: Results of direct manipulation test runs

more obvious in the results of the adaptive direct manipulation test run ADMD1
A.18. In this run the whole rear is nearly matched although there are only four object
points. That indicates that also the control points, which do not in�uence the object
points, are optimised to match the target, even if their calculation does not have
any informations about the target shape. Since the phenotype of an individual is
de�ned by its encoded control volume, the selection is mainly based on the control
points and only secondary on the displacement of the object points which specify
the movement of the control points. The control points are not only optimised to
match the object points but also to match the target shape. This optimisation is
much slower because it is not guided by object points.

6.4 Adaptation of direct manipulation

The direct manipulation approach has some limitations. As in the general FFD
approach the possible deformations of a shape are determined by the control volume.
In order to not exclude the optimal shape from the search space the control lattice
still has to be created carefully. The sensitive parts of the design have to be found.
As already mentioned in 5 this is di�cult and requires a huge amount of problem
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speci�c knowledge. In order to reduce the e�ort which is required to create an
adequate control volume, an adaptive representation (ADMFFD) can be used which
automatic increases the variability in promising areas.
The direct manipulation Free-Form Deformation can be adapted at two di�erent
parts:

• the control volume

• the set of object points

The control volume can be adapted during the calculation of the control points to
match the speci�ed object point deformation. This adaptation can be implemented
as described in chapter 5. The FFD method used to calculate the control points
is replaced by the developed AFFD approach. But several questions remain. One
has to decide when the control lattice should be re�ned. One possibility could be to
re�ne the lattice if the target points could not be matched. But re�ning the control
lattice does not ensure that the error of the control point calculation decreases. A
better object point matching can also be prevented by the convex hull constraint.
Therefore this re�nement criteria can lead to �ne control lattices. As already men-
tioned such �ne lattices make it di�cult to achieve large deformations while keeping
the convex hull constraint. Additional conditions are necessary to limit the number
of control points.
An other question is where the control lattice should be re�ned. Since the calcula-
tion of the control points is a target matching problem, more information is available
than in chapter 5 to select promising areas. There one has to proceed on the assump-
tion that a CFD-simulation is used. One option is to use the already implemented
sub-population approach with randomly selected insertion points. But the use of
several sub-populations slows down the control point computation. To reduce the
computational e�ort, a good choice could be to insert the new control points near
the object point which has the largest distance to its target position. But again if
the convex hull constraint impedes a better matching, the insertion will complicate
the matching.
The adaptation of the control volume in the direct manipulation is not discussed
further in this diploma thesis. But the results of the adaptive general FFD approach
indicates that an adaptation will improve the optimisation in several aspects. In the
general approach the adaptive control volume could speed up the optimisation and
also achieve better results. These improvements should also be possible in the direct
manipulation.
The direct manipulation of FFD can also be adapted by modifying the set of ob-
ject points. New points can be added or existing points removed. In both cases the
modi�cations of the representation are neutral mutations because the control points
remain unchanged. The stored control volume exactly matches the target positions
and thus a new control point calculation would not change the control lattice.
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Figure 6.9: A cell and the corresponding control points are depicted. The distances
between the control points at the last re�nement (black points) and their current
position (blue points) are totalises.

As for the adaptation of the control volume one has to decide when and where the
representation should be changed. In the executed tests the set of object points is
modi�ed after a �xed number of generation by adding a new object point. The re-
moval of points is not used. For the adaptation of the object point set the idea of
sub-populations is implemented again. Due to runtime reasons in all tests a single
sub-population is used.
In this thesis the in�uence of a changed object point set is analysed. Therefore tests
which use di�erent strategies for the selection of a new object point are used and
compared with the non adaptive direct manipulation. The �rst strategy always se-
lects the design point with the largest distance to the target point set. This strategy
is only available for the given target matching problem. It should be tested if the
adaptation of the object point set can improve the performance of the direct ma-
nipulation.
Furthermore a strategy is used which selects a random point of the design.
Based on the analysis of the direct manipulation a heuristic (LCD) for the object
point selection is developed and compared with a random strategy. The heuristic is
based on the control volume. As the results of the DMFFD approach show the con-
trol points are also adjusted to the dolphin in areas where no object point lies. That
indicates that the control points are optimised indirect to match the target. The
idea is that in areas where the deformation is changed much, further improvements
are possible. In such areas the optimisation has not converged. The control points
are still moved to �nd their optimal placement. To speed up the convergence in this
area, an object point of this region is added. The new object point should enable
a directed search in this region. In the implementation a cell of the control lattice
is used to specify the area. All control points, which have an e�ect on this cell, are
used to measure the deformation of the area. Their total displacement since the last
re�nement is calculated. The new object point is selected randomly from the cell
with the highest value. Cells which already contain an object point are neglected.
Figure 6.9 shows an example.
To estimate this heuristic, it is compared with a method which selects the FFD cell
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randomly. Again only cells which do not already contain an object point can be
selected.

6.5 Results of adaptive direct manipulation

To analyse the adaptive direct manipulation FFD, two test runs are executed. In
both runs the set of object points is increased. In run ADMD1 the representation
was modi�ed every 15th generation by adding the design point with the largest dis-
tance to the target shape. In run ADMD2 a random design point is added every
10th generation. The control volume used in both tests is the same as in the general
FFD approach (�gure 3.7) and is kept �x. Both tests use a (1,16)-CMA-ES and start
with 5 object points evenly distributed over the whole shape. As initial shape again
the circle is used.
For the control point computation a (1,16)-ES with global strategy parameter adap-
tation (GSA) is applied. In run ADMD2 the computation of the control points was
stopped if the error is below a threshold of 0.01.
The �tness progress in 6.10 shows that the rising number of object points leads to a
faster convergence. The number of �tness evaluations could be reduced from 5, 520
in run DMD2 to 3, 520 in run ADMD2. That corresponds to a ratio of about 36%.
This reduction can be explained with the smaller number of object parameters. The
reduced search space speeds up the optimisation. But the sole adaptation of the
object point set does not lead to a search in sub spaces as in the adaptive FFD
approach. The deformed design is determined by the control lattice. Its resolution is
already in the �rst generation �ne. It is not possible to produce a roughly approx-
imation of the optimum which is re�ned more and more during the optimisation.
However, more investigations are necessary to analyse the reasons for this reduction
more detailed.
The achieved �tness of ADMD2 is between the one of the �xed test runs, whereas
the �tness of ADMD1 is slightly better. But it has to be mentioned again that the
heuristic used in ADMD1 is based on information of the target. For real problems
this heuristic is not available. The truncation of the optimisation, caused by the
problems already described in section 6.2, prevents better results. Especially in run
ADMD2, which uses the �tness threshold in the control point calculation, better
results will be possible. The results of the adaptive direct manipulation test runs
are shown in A.18 and A.19. The dates are summarised in table 6.2.
These �rst results indicate that an adaptive representation is able to improve the
direct manipulation representation. Using a more sophisticated heuristic to select a
new object point instead using a random one will improve the results further. Also
the combination of an adaptive control volume and a variable set of object points
should be subject of future research. The results of the adaptive general FFD ap-
proach and of the adaptive direct manipulation show that an adaptive approach can
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Figure 6.10: The �tness progress of the adaptive direct manipulation test runs.

�tness object variables generations evaluations

DMD1 1.9593 40 363 5,808
DMD2 1.0690 80 435 6,960
ADMD1 1.0317 10 . . . 54 273 4,384
ADMD2 1.3616 10 . . . 56 219 3,520

Table 6.2: Results of adaptive direct manipulation test runs

improve the performance of the optimisation. If both are combined, the optimisation
should be improved additionally.
For the comparison of the developed strategy for object point selection with the ran-
dom strategy the initial shape is changed. Starting with a circle would not allow any
conclusions about the heuristic because in every area of the shape large deformations
are required. Therefore as initial shape a dolphin without �ns is used (�gure 6.11).
In this case the developed heuristic should be inserted the object points especially
in the regions of the �ns. Here the largest deformations are required.
However, the results of the test runs do not demonstrate this assumptions. The ob-
ject points are distributed over the whole design. In the areas of the �ns �rstly in
the 18th insertion operation an object point was placed.
The problem is that in the �rst generations the already adapted areas are modi�ed,
too. To achieve the initial good solution, these areas have to be adjusted again to the
target. Thus similar to the circle problem in every area of the shape object points
are required.
As a consequence the comparison of the heuristic and the random strategy does not
allow many conclusion. Figure 6.12 illustrates the �tness progress. For the tested
problem both strategies perform very similar.
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Figure 6.11: The initial shape used for the comparison of both object point selection
strategies.

Figure 6.12: The �tness progress of both object point selection strategies.
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Chapter 7

Conclusion and outlook

In this diploma thesis an adaptive Free-Form Deformation and a direct manipula-
tion of Free-Form Deformation were used in an Evolution Strategy to represent a
design. Both methods represent deformations of a control volume which contains
the initial design. In the case of the FFD method these deformations are speci�ed
by the coordinates of control points. Instead of using the control points directly to
represent the design in the direct manipulation FFD the control point coordinates
are de�ned by a set of object points and their target positions.
Since the Free-Form Deformation speci�es deformations, it can be used to deform
the computational grid required for the �tness evaluation. In the case of complex
designs a costly and eventually manual re-meshing procedure can be omitted. To
keep the structural composition of the grid after the deformation, the convex hull
constraint was introduced to restrict the deformation. The analysis of the problems
occurring in this constraint optimisation resulted in an algorithm that repairs the
control lattice to satisfy the constraint. The results of the tests have shown that the
developed correction algorithm reduces the number of �tness evaluations in compar-
ison to penalty methods.
The major goal of the adaptive representation was to reduce the dependence on
the initial representation created by designers. The adaptation should allow to �nd
new and unexpected solutions which are not codeable by the initial representation.
The implemented approach which uses several sub-populations with randomly re-
�ned representations achieves this goal. The FFD control volume was automatically
adapted to the problem but at the expense of �tness evaluations. For costly �tness
evaluations instead the random strategy with several populations a single heuristic
should be used. A test of a simple heuristic has shown that the convergence of the
optimisation and the quality of the solution could be improved even if the repre-
sentation was not adjusted to the speci�c problem. The use of more sophisticated
heuristics could probably improve the performance further.
Due to the limited re�nement possibilities of the B-spline basis functions and the
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insu�cient de�nition of the re�nement criteria, the approach did not create com-
pact representations. Conditions for the detection of a suitable point in time of a
re�nement have to be developed to avoid unneeded variability.
The FFD representation has also some limitations. The in�uence of a control point
on the design depends on its distance to the embedded design. To reduce the prob-
lem of placing the control points such that their in�uence is maximised, a direct
manipulation of FFD was introduced. It could be shown that the direct manipu-
lation increases the in�uence on the design and thus reduces the number of �tness
evaluations.
To maintain the convex hull constraint the computation of the control points had
to be changed. Instead of the pseudoinverse approach the previous implemented
general FFD Evolution Strategy was used to solve the constraint target matching
problem. The in�uence of this computation on the direct manipulation approach
was analysed.
Possibilities of an adaptive direct manipulation were discussed. The �rst tests have
shown that the enlargement of the object point set can reduce the number of �tness
evaluations. However, more investigations are necessary to analyse the behaviour
of the adaptive direct manipulation FFD representation. Especially the combina-
tion of an adaptive set of object points and an adaptive control volume seems very
promising and should be subject of further research.
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Appendix A

Results

A.1 Non adaptive approach

(a) The resulting shape

(b) Fitness value of the best and worst o�spring (c) Maximal and minimal strategy parameter of
the CMA

Figure A.1: Results of run PD1. The �tness function (4.1) with a �xed o�set for
invalid solutions is used. The convex hull constraint is ful�lled.
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(a) The resulting shape

(b) Fitness value of the best and worst o�spring (c) Maximal and minimal strategy parameter of
the CMA

Figure A.2: Results of run PD2. The �tness function (4.2) with an approximation
of the �tness is used. The convex hull constraint is not ful�lled.
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(a) The resulting shape.

(b) Fitness value of the best and worst o�spring.

(c) Maximal and minimal strategy parameter of
the CMA.

(d) Length of the displacements by the correc-
tion algorithm.

Figure A.3: Result of run CD1. All invalid solutions are corrected. The self adap-
tation is done by the CMA A methode. The global strategy parameter is reduced
according to the length of the required correction. The optimisation does not con-
verge.
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(a) The resulting shape. The lo-
cal optimum at the chest �n is
overcame.

(b) Fitness value of the best and worst o�spring.
The �tness value wavers between one and two.

(c) Maximal and minimal strategy parameter of
the CMA. The discret reduction is visible.

(d) Length of the displacements by the correc-
tion algorithm. If the correction becomes too
large, σ2 is reduced.

Figure A.4: Result of run CD2. Invalid solutions are corrected. The global strategy
parameter is reduced only if the correction algorithm fails. As the step size indicates
the optimisation does not converge.
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(a) The resulting shape.

(b) Fitness value of the best and worst o�spring.

(c) Maximal and minimal strategy parameter of
the CMA.

(d) Length of the displacements by the correc-
tion algorithm.

Figure A.5: Result of run CD3. The strategy parameters are adapted only by the
self adaptation. As the step size shows the optimisation converges.
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A.2 Turbine blade

(a) Shape with smallest �tness. (b) Trailing edge of the shape

(c) Fitness progress (d) Minimal and maximal strategy parameter

Figure A.6: The result and progress of test run CB1.
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(a) Shape with smallest �tness. (b) Trailing edge of the shape

(c) Resulting undeformed control lattice

(d) Fitness progress (e) Minimal and maximal strategy parameter

Figure A.7: The result and progress of test run AB1.
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A.3 Adaptive approach

(a) Shape with smallest �tness.

(b) Resulting undeformed control lattice

(c) Fitness progress (d) Minimal and maximal strategy para-
meter

Figure A.8: The result and progress of test adaptive penalty approach. The selection
of the sub-population is based on the absolute �tness value.
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(a) Shape with smallest �tness.

(b) Resulting undeformed control lattice

(c) Fitness progress (d) Minimal and maximal strategy parameter

Figure A.9: The result and progress of test run AD1.
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(a) Shape with smallest �tness.

(b) Resulting undeformed control lattice

(c) Fitness progress (d) Minimal and maximal strategy parameter

Figure A.10: The result and progress of test run AD2.
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(a) Shape with smallest �tness.

(b) Resulting undeformed control lattice

(c) Fitness progress (d) Minimal and maximal strategy parameter

Figure A.11: The result and progress of test run AD3.
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(a) Shape with smallest �tness.

(b) Resulting undeformed control lattice

(c) Fitness progress (d) Minimal and maximal strategy parameter

Figure A.12: The result and progress of test run AD4.
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(a) Shape with smallest �tness.

(b) Resulting undeformed control lattice

(c) Fitness progress (d) Minimal and maximal strategy parameter

Figure A.13: The result and progress of test run AD5.
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(a) 0 (b) 16 (c) 34

(d) 54 (e) 76 (f) 126

(g) 154 (h) 184 (i) 216

(j) 406 (k) 700 (l) 1492

Figure A.14: The progress of the shape deformation of run AD3. The subtitle shows
the generation of the shape.
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(a) 0 (b) 40 (c) 60

(d) 110 (e) 140 (f) 180

(g) 220 (h) 300 (i) 400

(j) 500 (k) 900 (l) 2267

Figure A.15: The progress of the shape deformation of run CD3. The subtitle shows
the generation of the shape.
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A.4 Direct manipulation approach

(a) Shape with smallest �tness. The object and
target points are also displayed.

(b) Fitness progress (c) Minimal and maximal strategy parameter

Figure A.16: The result and progress of test run DMD1.
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(a) Shape with smallest �tness. The object and
target points are also displayed.

(b) Fitness progress (c) Minimal and maximal strategy parameter

Figure A.17: The result and progress of test run DMD2.
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A.5 Adaptive direct manipulation approach

(a) Shape with smallest �tness. The object and
target points are also displayed.

(b) Fitness progress (c) Minimal and maximal strategy parameter

Figure A.18: The result and progress of the adaptive direct manipulation test run
ADMD1. Every 15th generation the design point which is farthermost from the
target is added into the genotype.
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(a) Shape with smallest �tness. The object and
target points are also displayed.

(b) Fitness progress (c) Minimal and maximal strategy parameter

Figure A.19: The result and progress of the adaptive direct manipulation test run
ADMD2. Every 10th generation a random point of the design is added into the
genotype.
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(a) Shape with smallest �tness. The object and
target points are also displayed.

(b) Fitness progress (c) Minimal and maximal strategy parameter

Figure A.20: The result and progress of the adaptive direct manipulation test run
ADMD3. Every 10th generation a new point is added into the genotype. The point
is selected randomly of the FFD cell which was changed most since the last re�ning
and does not already contain an object point.
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(a) Shape with smallest �tness. The object and
target points are also displayed.

(b) Fitness progress (c) Minimal and maximal strategy parameter

Figure A.21: The result and progress of the adaptive direct manipulation test run
ADMD4. Every 10th generation a design point of FFD cell which does not already
contain a object point, is selected randomly.
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